
Relational bytecode correlations

Lennart Beringer1

Institut für Informatik, Ludwig-Maximilians-Universität München,
Oettingenstrasse 67, 80538 München, Germany

Tel/Fax: ++49-(0)89-2180 9864/9338

Abstract

We present a calculus for tracking equality relationships between values through pairs
of bytecode programs. The calculus may serve as a certification mechanism for non-
interference, a well-known program property in the field of language-based security,
and code transformations. Contrary to previous type systems for non-interference, no
restrictions are imposed on the control flow structure of programs. Objects, static and
virtual methods are included, and heap-local reasoning is supported by frame rules. In
combination with polyvariance, the latter enable the modular verification of programs
over heap-allocated data structures, which we illustrate by verifying and comparing
different implementations of list copying. The material is based on a complete formal-
isation in Isabelle/HOL.

Key words: Non-interference, Relational proof systems, Program transformations,
Proof-carrying code, Formalised program analyses

1. Introduction

Non-interference is a well-known program property in the area of language-based
security [1]. In its most basic form for a simple imperative language over integers,
it may be formulated by separating the program variables disjointly into public (low
security) L and private (high security) variables H. The property then requires that the
program preserves the relation =L between states, which is to say that the final states
of two executions agree on all variables in L whenever the initial states did.

A similar property specifies the semantic validity of program transformations: two
executions (now of different programs) commencing in identical states should yield
identical states, or should at least yield return states which agree on all variables that
are relevant for the ensuing program continuation.

Email addresses: beringer@tcs.ifi.lmu.de (Lennart Beringer)
URL: http://www.tcs.informatik.uni-muenchen.de/~ beringer (Lennart Beringer)

1Present address: Department of Computer Science, Princeton University, 35 Olden Street, Princeton
08544, New Jersey

Preprint submitted to Journal of Logic and Algebraic Programming October 1, 2009

In this article, we consider a common abstraction of these two notions called (partial-
correctness) program correlations, and present technology for certifying when pro-
grams or their executions are correlated.

In order to motivate such a unifying treatment, let us first observe that non-interference
is not only robust under semantics-preserving transformations but that the two notions
are in fact of equal strength: if c′ is a semantically valid transformation of c and h is a
variable occurring in neither c nor c′, then

if h then c else c′

is non-interferent. On the other hand, if c is non-interferent and its high-security vari-
ables are among h1, . . . , hn, then c2 is a semantically correct transformation of c1, where

c1 := h1 := 0; . . . ; hn := 0; c; h1 := 0; . . . ; hn := 0
c2 := h1 := 1; . . . ; hn := 1; c; h1 := 0; . . . ; hn := 0.

The latter half of this duality is a variant of a well-known observation [2, 3] that un-
derlies self-composition [4]. However, with the exception of [5] we are unaware of at-
tempts to exploit this proximity for the development of flexible verification formalisms
for non-interference.

Our verification technology concerns an idealised subset of sequential bytecode and
is based on novel abstractions of states and state pairs. These abstractions approximate
equality and separation between values held in a single state and correlate values across
a pair of states. The verification technology itself consists of unary and relational proof
systems for programs and program pairs which track the evolution of abstract states.
As a consequence of the characteristics of abstract states, the proof systems capture a
type of copy propagation, are applicable to structured as well as unstructured bytecode
without requiring additional control flow information, admit heap-local reasoning, and
are compatible with peep-hole transformations. All these characteristics separates our
approach from previous non-interference type systems for bytecode [6, 7, 8]. We il-
lustrate similarities and differences to these and other static analyses using a number
of example programs, including a recursive method over heap-allocated lists with a
complex non-interference specification. Motivated by proof-carrying-code (PCC, [9])
considerations we have carried out a complete formalisation of the work reported in the
present article, using the Isabelle/HOL theorem prover [10]. A formalisation snapshot
is available electronically [11].

1.1. Motivating example programs
We briefly demonstrate some restrictions of previous type systems and illustrate

them by simple example programs. To enhance readability, the programs are given as
J code. We will later return to these examples and show how our approach admits
the verification of their respective bytecode representations.

Copy propagation, correlated values and operations. Consider the class definition in
Figure 1. Phrased in traditional terms, the verification task consists of showing that
C.m2 is non-interferent if l is a public argument and h a private argument. The code
exhibits the following characteristics which prevent it (and its bytecode representation)
from being verifiable using existing type systems.

2

class C {

int A;

int m1(int y){ this.A := y; return y }

int m2(int l; int h){

x := l;

if h

then { x := x+3; v := new C; v.A := x; return v.A }

else { x:=3; x:=l+x; v:= new C; return v.m1(x) }

}

}

Figure 1: Example: tracking constants and copies

• The value initially held in l is copied to the auxiliary local variable x which is
then used in the positive branch, while the negative branch uses l and employs x
for some different purpose. Copy propagation is not taken into account by previ-
ous approaches, so the equality between l and x cannot be tracked or exploited.

• The value originally held in l is incremented by the same value in both branches,
but the branches differ slightly in the way this increment is constructed. Like
copy propagation, the introduction of identical values by two execution paths,
and the propagation of value correlations by arithmetic operations are not sup-
ported – but the fact that the results of the additions are identical is critical for
showing the equality of the final return values.

• Both branches create local (i.e. in the conventional sense: private, due to the
existence of an enclosing high branch condition) objects. They also assign values
to the A-field of these objects, in case of the negative branch by means of a
method invocation. Previous type systems consider “privately allocated” objects
as invisible and propagate this restriction to any values that flow through fields or
methods of private objects, i.e. designate any value read from a field of a private
object as private.

• In order to prove that the values returned by the two branches are identical, it is
necessary to track their flow through the field assignment of the positive branch
and the invocation of method m1 in the negative branch. Typically, this is not sup-
ported by existing type systems as no relationship is maintained between initial
and final values of method calls.

The calculi we present do not classify variables or fields statically as private or public,
do not single out code regions according to the visibility of the branch condition, lift
the restrictions on object allocation, and admit the tracking of values and their copies
through fields and methods.

As a small variation of C.m2, one may consider a method C.m3 of return type
C that arises from C.m2 by replacing the return expression of the positive branch by
return v and that of the negative branch by the sequence x:= v.m1(x); return
v. In this case, a client of method C.m3 should be able to exploit the fact that field A
of the returned object may be considered low (i.e. contains correlated values in the two

3

abstract class LIST { LIST Copy () }

class NIL extends LIST { NIL Copy(){ return (new NIL) } }

class CONS extends LIST { Object HD; LIST TL;

CONS Copy() {

h:= this.HD; t:= this.TL; t:= t.Copy();
z:= new CONS; z.HD := h; z.TL := t; return z }

}

Figure 2: Example: list copying

executions), irrespective of the execution path chosen inside C.m3 to create the object
and assign to its field.

It may be argued that some of these restrictions can be overcome by applying anal-
yses and transformations that bring the code into a form that is acceptable to existing
type systems. Indeed, C.m2 is equivalent to

int m4(int l){x := l+3; v := new C; v.A:= x; return x}

However, such transformations need to be certified in a trustworthy system in order to
ensure that only semantics-preserving manipulations have been applied. Demonstrat-
ing the usefulness of the relational approach, we will therefore validate the equivalence
between m2 and m4 in Section 4.3, thus highlighting how the close relationship between
non-interference and program transformations may be exploited in practise.

Heap-local reasoning. The effect of method invocations on heap objects is usually
constrained along the axis of visibility (i.e. the separation public/private), irrespectively
of the reachability of objects from the method parameters [6]. For example, giving a
method m declared by

int C.m(D x){. . .}

the heap effect high indicates that at most private fields are modified. This assertion,
however, is too weak for guaranteeing that private fields or objects whose existence is
irrelevant for method m remain unchanged. This includes fields of objects that are not
reachable following fields access paths from the receiver object or the method argu-
ment. Similarly, a heap effect low allows any field to be updated (again irrespective of
its reachability from the method arguments), destroying any data structure invariant on
whose validity the client code relies.

Programs where heap-local reasoning is of particular importance are recursive pro-
grams over algebraic data structures such as lists and trees. Figure 2 contains a repre-
sentation of lists, where the two constructors are represented as subclasses of a com-
mon abstract superclass. Written in a recursive style, the method copies the spine of a
list without duplicating the content elements pointed to by HD. In Section 5, we will
verify that this code indeed lays out the copy in a fresh memory area. We will also
compare bytecode variations resulting for the code from Figure 2 and thus provide a
further application to program transformations. Finally, we will show that the code
is non-interferent for lists where the visibility of the elements pointed to by HD alter-
nates. To our knowledge, such policies would be impossible to model and hence verify

4

in formalisms that statically associate security domains to fields unless specification-
dependent code modifications are permitted. All proofs in Section 5 exploit the fact
that recursive calls leave environmental objects unchanged and thus preserve the well-
structuredness of list segments and the (non-)visibility of content data. The fine-grained
tracking of objects necessary for such local reasoning is a characteristic of our approach
that is inspired by separation logics [12]. Indeed, the proof systems we present include
frame rules that enable the embedding of local judgements in contexts where additional
heap objects are present. In contrast to the work of [12] however, our frame rules (like
all the other proof rules) occur as part of a (domain-specific) static calculus rather than
a general-purpose program logic.

1.2. Previous work

Throughout the paper, we will compare specific aspects of our calculi with proper-
ties of some formalisms from the literature. We therefore briefly discuss some immedi-
ately relevant pieces of previous work in the present section. Pointers to further related
work will be given at the end of the article.

Relational program logics. A core component of our technology consists of a rela-
tional proof system, i.e. a calculus that exposes the two-execution-nature of correla-
tions by judgements over pairs of program phrases. At the level of program logics,
Benton [13] advocates a relational formulation for verifying transformations and inter-
preting existing type systems for non-interference, Amtoft et al. [14] present a logic
where assertions have unary as well as relational interpretations, and Yang [15] in-
troduces a relational form of separation logic. In contrast, the calculus introduced in
the present article is purely static, i.e. trades logical precision for potential of auto-
mated proof checking. As a further difference, we consider a sequential fragment of
the Java Virtual Machine Language, while the cited works consider languages of struc-
tured commands and while-loops (in the case of [13]: without objects or methods).
The relationship between our work and the cited works is thus similar to that of unary
type systems and non-relational Hoare-logics [16]: we expect our calculus to be em-
beddable in a suitable adaptation of the relational program logics to bytecode. In the
absence of a formalised relational bytecode logic our development justifies the calculi
by direct reference to the operational semantics, similar to the work on foundational
PCC [17].

Type-systems for bytecode-level non-interference. Previous bytecode type systems for
non-interference have largely been based on transferring Volpano et al.’s concept of
pc-type [18], where the security level of branch and loop conditions determines the
legality of assignments to variables and fields in the code regions dominated by the
branch [6, 7, 8]. Consequently, these approaches require control flow information on
whose correctness the overall soundness of the analysis relies. In the case of [7], this
information is communicated by interspersing the original code with suitable pseudo-
instructions. Barthe et al. [6] and Kobayashi-Shirane [8] capture similar information in
meta-level functions. In the case of [6], axioms (called safe overapproximation prop-
erties – SOAP’s) are presented that capture those properties on which the soundness
proof relies. The relational structure of judgements separates our approach from these

5

x y z 3f

2f

f 1 f 1

2f

3f

HΓ

C C

Figure 3: Illustrating an abstract state for J

analyses, and also from approaches based on formal dependencies between variables
or def/use relationships such as (at the level of Java) [19]. Indeed, our approach re-
laxes the above restrictions regarding assignments to fields and variables, avoids the
pc-type, and consequently eliminates the need for additional control flow information.
In particular, it is applicable to structured as well as unstructured bytecode.

We should stress that our approach concerns, in accordance with the intended
compatibility with semantics-preserving transformations, extensional interpretations of
non-interference policies, i.e. concerns only initial and final states. In contrast, some
of the above-cited works apply a more intensional view where visibility restrictions of
fields are to be respected throughout an execution. Furthermore, we restrict our atten-
tion to termination-insensitive interpretations, i.e. consider two executions vacuously
equivalent if one of them fails to terminate.

Translation validation using symbolic execution. Viewed as a system for certifying
transformations, our approach may be seen as a variant of symbolic execution as em-
ployed by Necula [20] and Tristan and Leroy [21, 22]. Indeed, our judgements relate
initial and final states, capturing a similar property as symbolic expressions which spec-
ify the content of variables at the end of phrases (basic blocks) in terms of their values
in the initial states. In contrast to our separation constructions, however, the cited works
treat the memory as a monolithic block. As a consequence, some of the equations on
exchanging the order of memory operations that are required in Tristan and Leroy’s
verification of list scheduling are immediately derivable in our calculi. On the other
hand, we do not consider issues of inference in the present paper (as Necula does), and
only consider a single (and substantially simpler) language.

1.3. Components of our approach

In order to give the reader an intuitive understanding of our approach, we sum-
marise the main ideas, again at the level of J.

Abstract states. In the absence of explicit classifications of program variables, object
fields or code regions according to their security level, the fact that a variable or field
contains identical values in two states is expressed directly, using a notion of (pairs
of) abstract states. An abstract state is comprised of similar components as a concrete
state, but contains abstract values (“colours”) in the place of concrete runtime values.
Figure 3 illustrates the idea of abstract states at the level of J. The component to
the left represents an abstract store, mapping variables x, y, and z to colours �, •,

6

H’Γ ’

b 3g

+2g

1g
+

+

+

a

D

Figure 4: A further abstract state for J

and �. The component to the right represents an abstract heap that is comprised of two
elements, at abstract locations � and �. Both abstract objects are of class C and contain
abstract values in the fields f1, f2, f3. Abstract states for bytecode will also contain an
abstract operand stack, and will be complemented by a component that captures type
information. The latter will, for example, indicate that � and � represent reference
values, and • and ◦ integer values.

Occurrences of an abstract value in different storage locations of an abstract state
represents equality of the concrete values in the corresponding locations of a compat-
ible concrete state. Thus, a state suitable for our example abstract state will contain
the same (integer) value in all •-positions, and the same (reference) value in all �-
positions. On integers, different abstract values may represent the same concrete value.
Thus, the runtime values for • and ◦ may in fact be identical. In contrast, different
address values are always abstracted to different colours: the runtime values interpret-
ing � and � are required to be different, hence the concrete state will be guaranteed
to contain two distinct C-objects. This property reflects the fact that each object allo-
cation introduces a fresh address, while no such freshness condition is guaranteed to
hold for the integer instructions. The resulting separation discipline enables heap-local
reasoning in the style of Separation Logic [12]. Indeed, our calculus includes a frame
rule similar to the one of Separation Logic.

Each abstract state thus contains statically approximative information regarding the
copies of runtime values in a single concrete state. In order to capture information about
the correlation of values across two executions, we use structures called relational state
descriptions (RSD’s). These contain two abstract states, together with a single type-
info component of the kind mentioned above. Ignoring the latter component as well as
abstract operand stacks again, Figure 4 depicts a further abstract state (Γ′,H′), which
together with the state (Γ,H) from above yields the RSD φ = ((Γ,H), (Γ′,H′)).

RSD’s are interpreted over pairs of concrete states, one from each execution. In ad-
dition to requiring that each concrete state satisfies its abstract counterpart, the interpre-
tation mandates that whenever a colour occurs jointly in both abstract states (possibly
in different abstract storage locations), the runtime values interpreting such a colour in
the concrete states must be indistinguishable. In particular, any colour of integer type
must be interpreted identically in the two concrete states. For example, all positions
containing • in Figures 3 and 4 contain the same (integer) value. This discipline gen-
eralises the relations =L mentioned above if both abstract stores contain at least the

7

variables in L. However, our notion enables the comparison of abstract states of differ-
ent – even distinct – domains, as indicated by the use of variables in Figure 4 that are
distinct from those in Figure 3. Furthermore, RSD’s inherit the ability to track copy
propagation from abstract states and may associate different colours with a variable at
different program points. In particular, they do not require a static classification of vari-
ables into public and private variables. When analysing non-interference, these features
are useful when comparing states that stem from different branches of a conditional,
for example when one branch introduces a further variable. With respect to the certi-
fication of program transformations, these features allows us to relate code fragments
that have undergone renaming, coalescing, or splitting of variable names.

The treatment of fields is similar to that of variables, again in contrast to the static
classification of field names into public and private fields in previous work. With re-
spect to objects, the colours occurring in the domains of the abstract heaps of an RSD
implicitly determine a partial bijection between addresses in the style of Banerjee &
Naumann and Barthe et al. [23, 6].

Summarising, our approach tracks equality of values across two states irrespec-
tively of their storage locations. Roughly speaking, colours that occur in both abstract
states of an RSD amount to public (“correlated”) values, while colours present only in
one of the abstract states play the role of private values.

Proof systems. Our verification approach employs static proof systems which - like
type systems - approximate when a program pair satisfies the desired runtime property
but are necessarily incomplete. We envision that systems like the one we present will
mostly be used as a low-level formalism in proof-carrying-code (PCC) applications.
In accordance with this, the side conditions of the proof rules are computationally
simple. In contrast, full program logics are more expressive but require non-trivial
computations in order to discharge the side condition of the rule of consequence. As a
purely syntax-directed fragment would be to weak, we include some structural rules, at
the price of complicating proof search. In the present paper, we are not concerned with
proof inference, which we believe will be mostly performed at higher language levels
and may only be feasible for restricted subsystems. Our treatment of high-level data
structures in Section 5 represents a first step in this direction and indicates how one
may bridge the gap between the operational semantics of low level code and high-level
invariants of application programs and data structures.

Our main judgement form associates a pair of bytecode phrases with a pre-RSD
and a post-RSD, as in ` c, c′ : φ → ψ. In accordance with our initial observation,
such a judgement may be read as concerning either a program transformation or non-
interference. The former reading expresses the semantic soundness of transforming c
into c′, where φ captures correlations between the input states of the two executions and
ψ captures correlations between the terminal states. The second reading asserts non-
interference of c if c and c′ are identical, where again φ captures correlations between
the input states of the two executions and ψ captures correlations between the terminal
states. Cases where c and c′ differ arise in proof trees of such judgements, for example
if the top-level command is a conditional and c and c′ are the respective branches.

Judgements are interpreted in a partial-correctness style, which in the case of non-
interference amounts to termination-insensitivity. A special case of the interpretation

8

asserts that the final states of two terminating executions commencing in states related
by the pre-RSD are related by the post-RSD. However, the formal interpretation of
judgements is more general, as it extends this guarantee to all separated state exten-
sions of the abstract states mentioned in the judgement. This interpretation simplifies
the proof of the frame rule, and also yields a stronger guarantee than previous type
systems, as non-interference is guaranteed to hold in contexts containing additional
objects: paraphrasing and slightly simplifying the formal development to make it ap-
plicable to J, we will define a property

Safec,c′ (φ, ψ) := ∀ s s′ t t′. s =φ s′ ∧ s, c ↓ t ∧ s′, c′ ↓ t′ =⇒ t =ψ t′

where s =φ s′ denotes indistinguishability of s and s′ w.r.t. RSD φ, and s, c ↓ t
represents the operational semantics. The interpretation of a relational judgement
` c, c′ : φ→ ψ will then be given by

Interpretec,c′ (φ, ψ) := ∀ φ′ ψ′ ξ. φ′ = φ ∗ ξ ∧ ψ′ = ψ ∗ ξ =⇒ Safec,c′ (φ
′, ψ′),

where ∗ denotes the separating conjunction of RSD’s, which in particular requires the
domains of the abstract heaps to be distinct. By choosing ξ to be the empty RSD this
interpretation specialises to Safec,c′ (φ, ψ). Choosing non-trivial ξ yields the guarantee
that non-interference (or correctness of a transformation) will be satisfied by concrete
states s, . . . , t′ that satisfy the extended RSD’s, i.e. contain additional objects for the
colours in the abstract heaps in ξ. These states will satisfy t =ψ′ t′ whenever s =φ′ s′,
s, c ↓ t, and s′, c′ ↓ t′ hold. The situation may be compared to notions of observational
equivalence: there, phrases are examined with respect to their behaviour in program
contexts, while our notion compares their behaviour in terms of state contexts2.

Our proof system is governed by a distinction between correlated and non-correlated
events. Correlated events occur when the two program runs execute instructions with
“corresponding” effects. In our case, correlations may exist between pairs of instruc-
tions that introduce values to states (i.e. the instruction forms const i, new C, arith-
metic operations, and method invocations), and between pairs of conditionals. All
instruction forms may occur uncorrelated, in which case they only affect one of the
two executions. The latter class in particular includes operations that transfer exist-
ing values between the components of states (load/store, simple stack operations, field
access), and method invocations and conditionals that occur only in one execution.

In accordance with this dichotomy, the proof system is comprised of rules for cor-
related instructions and rules for non-correlated instructions. Those of the latter kind
are isolated as a separate proof system of unary judgements. Roughly speaking, un-
correlated segments correspond to high code regions in extant type systems, but in
the absence of a formal separation into high and low code regions this notion is only
phenomenologically observed rather than actively enforced. In particular, instruction
forms that transfer abstract values between the components of an abstract state (for

2Having completed the work described in this article, we learnt that similarly extended interpretations
of Separation Logic judgements have been employed by Birkedal and Yang for modelling the semantics of
higher-order separation logics, and have been called resource Kripke semantics by these authors [24].

9

Γ1

y zx

H1

3f

2f

f 1

C

f 1

2f

3f

C

Figure 5: Illustrating the effect of applying x := x. f1 on the state from Figure 3

Γ0

y zx

0H

3f

2f

f 1

C

H0’
3f

2f

f 1

C

y zx

Γ0’

Figure 6: Local-reasoning transition for field access

example field access instructions) are verified using unary rules, irrespectively of the
existence or visibility of enclosing branch conditions. For example, the effect of execut-
ing (the sequence of bytecode instructions corresponding to) the instruction x := x. f1
on the abstract state of Figure 3 yields the abstract state (Γ1,H1) shown in Figure 5.

The main system of relational proof rules includes the unary proof rules by virtue
of appropriate injection rules. Thus, carrying out the above field access operation to
the RSD φ yields the RSD ((Γ1,H1), (Γ′,H′)). In particular, the effect is independent
of the visibility of the object or the field involved in the access operation, in contrast to
the above-mentioned restrictions on field access operations in previous type systems.
Similar comments apply to method invocations that are applied only to one of the
components.

The relational proof system also contains rules for correlated events. These af-
fect both components and resemble low proof rules of traditional type systems. For
example, we have rules for correlated occurrences of conditionals and method invoca-
tions, and rules for synchronised value creation, for integer values as well as references
(i.e. object allocation). The latter rules introduce fresh colours to both abstract states. In
contrast to traditional low proof rules, however, our rules do not require the correlated
instructions to occur at the same program point.

The frame rules embed judgements into contexts with additional objects or colours
and thus support heap-modular reasoning. Indeed, the transition from Figure 3 to Fig-
ure 5 may be justified by framing the object � onto the transition from (Γ0,H0) to
(Γ′0,H

′
0) given in Figure 6.

Furthermore, there are axiom rules for extracting assumptions from appropriate
(polyvariant) unary and relational proof contexts, and further structural rules.

The declarative style of abstract states ensures that the proof systems are flow-

10

insensitive [25], with respect to variables as well as fields.
In order to maintain the copy propagation information embodied in abstract states

across method invocations, judgements are required to preserve colours and abstract
addresses. This means that the administrative component of the post-RSD must con-
tain the administrative component of the pre-RSD, and that each abstract object in the
abstract heap of an initial abstract state must be present (albeit with potentially differ-
ent abstract values in the abstract fields) in the corresponding abstract heap of the final
RSD. Thus, while the interpretation of object colours of a single RSD amounts to a
partial bijection between addresses (essentially the partial bijection constructed in the
work of [23] and [6]), the resulting discipline regarding objects across a judgement is
slightly different from [23] and [6]. The interpretation in the latter works requires the
existence of a partial bijection on the post-heaps that extends the partial bijection on
the pre-heaps. Both partial bijections capture correlated (“low”) objects but ignore non-
correlated ones. Our interpretation explicitly relates pre- and post-objects, irrespective
of their visibility level. This preservation of colours and objects is also imposed on
the unary proof system. As a result, one may specify restricted functional correctness
policies which, for example, guarantee that the result of a method points to a freshly al-
located object, or that it coincides with the value passed in a certain argument position.
The latter property is useful for tracking copies through method calls.

Abstract representation predicates. In order to specify non-interference and transfor-
mation relationships in the presence of heap-allocated data-structures, we introduce
representation predicates that construct or characterise components of RSD’s. Their
definition proceeds by induction on meta-level data structures and makes use of sep-
aration operators for abstract states. Indeed, these predicates resemble datatype rep-
resentation formulae in separation logic that specify concrete states. Together with
polyvariance of the proof system, and the frame rules, they enable the structured for-
mulation and heap-modular verification of complex unary and relational properties of
recursive methods over inductive data types.

1.4. Outline

Section 2 introduces syntax and operational semantics of our chosen language frag-
ment. The derivation system for unary judgements is then presented in Section 3, fol-
lowed by the relational system in Section 4. In both cases, example verifications illus-
trate core properties of the system, complementing the more theoretical developments.
In Section 5, we describe the verification of code over heap-allocated data structures,
using abstract representation predicates and illustrated by the code for list copying. We
conclude by discussing further related and future work in Section 6.

2. Syntax and operational semantics

We consider an idealised subset of the JVML where programs are formulated over
the disjoint sets X of (local) variables, C of class names,M of method names, and F
of field names, ranged over, respectively, by x, C, m, and f and similar letters. Program

11

labels ` ∈ C×M×N comprise a class name, a method name, and an instruction counter
l. Programs map labels to instructions of the grammar

ι ::= const i | dup | pop | swap | load x | store x | binop ⊕ | new C | getf C. f

| putf C. f | invStat C.m | invVirt C.m | goto ` | ifeq ` | vreturn

The categoryV of values (ranged over by v) comprises integers i and addresses a ∈ A,
while ⊕ ranges over binary integer operators such as add,mul, Compared to the
full sequential fragment of JVML the most significant difference is the omission of
exceptions, null references and arrays. The treatment of these features is a topic for
future research (see Section 6).

We write P(`) = ι to identify the instruction at label `. Throughout the paper,
we require that all jumps in the body of a method C.m have targets in C.m and that
instructions in each body are numbered consecutively starting from 0. To simplify
notation, we write ` + 1 for (C,m, l + 1) where ` = (C,m, l). We denote the subclass
relation by C ≤ C′, require that overriding method declarations use the same formal
lists of parameters as the overridden declarations, and denote the parameter list of a
method by params(C,m).

The operational semantics is given over states s = (O, σ, h) comprising an operand
stack O ∈ V∗, a store σ ∈ X ⇀fin V, and a heap h ∈ H . Heaps are modelled as
finite maps from locations to objects, where an object comprises a class identifier (the
dynamic class) and a field table: H = A⇀fin (C × (F ⇀fin V)). To fix some notation,
|L| denotes the length of some list L, L!n the item at position n (where 0 ≤ n < |L|),
[] the empty list, :: the cons operation, and cod L the set of elements contained in
L. A ⇀fin B is the type of finite partial maps from A to B, with lookup, update,
containment, union, and delete operations . ↓ ., .[. 7→ .], . ⊆ ., . ∪ . and . − ., [] the
empty map, and dom . and cod . defined as usual.

The dynamic semantics is given by two mutually recursive judgement forms. The
big-step judgement form P ` s, ` ⇓ h, v is defined by the rules

V
P(`) = vreturn

P ` (v :: O, σ, h), ` ⇓ h, v
and R

P ` s, ` → t, `′ P ` t, `′ ⇓ h, v
P ` s, ` ⇓ h, v

and models the (terminating) execution from label ` until the end of the current method
invocation frame. Rule R involves a small-step judgement P ` `, s → `′, t as a
hypothesis. Small-step judgements model the execution of single instructions. The
appropriate rules are given in Figure 7. Note that the cases for method invocations
(rules IS and IV) refer in turn to big-step judgements regarding the method bodies.
A similarly structured operational semantics is used in [22].

3. Unary proof system

We now present the unary proof system. In addition to occurring as a subsystem
of the relational proof system, this system is of significance in its own right, as it is
able to certify basic functional correctness properties that involve identity relationships

12

Name P(`) O `′ t Side conditions
C const i O ` + 1 (i :: O, σ, h)
L load x O ` + 1 (v :: O, σ, h) σ↓x = v
S store x v :: O′ ` + 1 (O′, σ[x 7→v], h)

N new C O ` + 1 (a :: O, σ, k)
{

a < dom h
k = h[a 7→ (C, [])]

G getf C. f a :: O′ ` + 1 (v :: O′, σ, h)


h↓a = (C′, A)

C′ ≤ C
A↓ f = v

P putf C. f v :: a :: O′ ` + 1 (O′, σ, k)


h↓a = (C′, A)

C′ ≤ C
A′ = A[f 7→v]

k = h[a 7→ (C′, A′)]
IT ifeq `1 0 :: O′ `1 (O′, σ, h)
IF ifeq `1 i :: O′ ` + 1 (O′, σ, h) i , 0

I
see table

P ` (O, σ, h), ` → t, `′

IS

P(`) = invStat C.m params(C,m) = [x1, . . . , xn]
P ` ([], [xi 7→ vi], h), (C,m, 0) ⇓ k, v

P ` ([v1, . . . , vn]@O, σ, h), ` → (v :: O, σ, k), ` + 1

IV

P(`) = invVirt C.m h↓a = (C′, A)
params(C′,m) = [x1, . . . , xn] C′ ≤ C

P ` ([], [xi 7→ vi, this 7→ a], h), (C′,m, 0) ⇓ k, v

P ` ([v1, . . . , vn, a]@O, σ, h), ` → (v :: O, σ, k), ` + 1

Figure 7: Dynamic semantics (rules for dup, pop, swap, goto `′, and binop ⊕ omitted)

13

S

x y

Γ
int

int

class D

class C

N

C1

f 1

3f
2f

H

Figure 8: An abstract state

between initial and final values, and freshness conditions for objects allocated by a
phrase.

For the remainder of the paper, let C be an infinite set of identifiers (“colours”),
ranged over by γ, δ and similar letters. Moreover, we denote by T the set of types,
whose constituents (typically ranged over by tp) are int and terms of the form class(C).
To simplify the notation, we also suppress explicit references to P from most defini-
tions.

3.1. Abstract states
Definition 1. (Abstract states) An abstract state is a triple Σ = (S ,Γ,H) where S ∈ C∗

is called an abstract operand stack, Γ ∈ X ⇀fin C an abstract store, and H ∈ C ⇀fin

(C × (F ⇀fin C)) an abstract heap. The domain of Σ is defined by Dom(Σ) = cod S ∪
cod Γ ∪ dom H ∪

⋃
(C,F)∈cod H cod F, i.e. the set of colours occurring in Σ.

An administrative map is a structure N ∈ C ⇀fin T , associating a type to each
colour in its domain. The object domain of N is defined by ODom(N) = {γ | ∃C. N↓
γ = class(C)}.

Example. Figure 8 shows an abstract state with the four colours �, �, �, and �. The
state consists of an abstract operand stack with three elements, an abstract store with
entries for variables x and y, and an abstract heap comprising a single element �
of class C1 with three abstract fields. The figure also shows an administrative map
indicating the typing information of the four colours.

Abstract state Σ = (S ,Γ,H) is closed with respect to N if Dom(Σ) ⊆ dom N,
Dom(Σ) ∩ ODom(N) ⊆ dom H, and for all H↓γ = (C, F) there is some C′ with C ≤ C′

and N↓γ = class(C′). This means that all colours in Σ occur in N, H contains objects
for all colours in Σ that identify heap objects, and all abstract objects in H are associated
with an object colour in N such that the class associated with γ in H is a subclass of
that associated with γ in N. In particular, the second condition expresses that there are
no dangling abstract pointers.

Example. The abstract state in Figure 8 is not closed since the colour � occurs in
S but H does not contain a corresponding object. Figure 9 shows an appropriately
extended abstract state Σ, which is indeed closed provided that C1 ≤ C and D1 ≤ D
hold.

14

S

int

int

class D

class C

N

D1

2g

g1

C1

f 1

f 2

3f

H

x y

Γ

Figure 9: Abstract state Σ = (S ,Γ,H) closed w.r.t. administrative map N

Next, we define the interpretation ~γ�s
Σ,I of colour γ with respect to abstract state

Σ, concrete state s, and a function I assigning addresses to colours. The interpretation
consists of the set of values stored in s at Σ-positions containing γ.

~γ�(O,σ,h)
(S ,Γ,H),I ≡ {O!n | S !n = γ} ∪ {σ↓x | Γ↓x = γ} ∪ XH,I,γ ∪{

A↓ f |
∃ ε C C′ F. H↓ε = (C, F) ∧
F↓ f = γ ∧ h↓(Iε) = (C′, A)

}

where XH,I,γ =

{
{Iγ} if γ ∈ dom H
∅ otherwise.

Definition 2. (Interpretation of abstract states) Concrete state s = (O, σ, h) satisfies
abstract state Σ = (S ,Γ,H) with respect to interpretation I and map N, notation
s |=I

N Σ, if

• Σ is closed with respect to N

• O and S are of identical length, dom Γ ⊆ dom σ, and for all H↓γ = (C, F) there
are C′ ≤ C and A such that h↓(Iγ) = (C′, A) and dom F ⊆ dom A

• for all γ ∈ Dom(Σ), ~γ�s
Σ,I is a singleton set,

• Dom(Σ) ∩ ODom(N) ⊆ dom I, and

• I is injective on dom H.

This interpretation admits the concrete heap h to contain objects not tracked by H, but
the injectivity condition for I enforces that distinct abstract objects are interpreted as
distinct concrete objects.

Example. For I(�) = a1 and I(�) = a2 and distinct addresses a1, . . . , a3, the concrete
state s shown in Figure 10 satisfies the abstract state Σ from Figure 9, provided that
C2 ≤ C1 and D2 ≤ D1. In addition to the entities tracked by Σ, the concrete state
contains an additional variable z, an additional object at location a3, and an additional
field G3 in the object at a1. The two integer colours � and � happen to be interpreted
by the same number.

15

2a

a1

42

O

C2

f 3 42

f 2 42

a1f 1
2a

D2

2ag1

g2 42

g3 99

a1 a3

D2

2g 22

g3 59

a3g1

2a

x

42

y z

59

σ h

Figure 10: A concrete state s = (O, σ, h) satisfying the abstract state Σ shown in Figure 9

We let H ∗ K denote the union of abstract heaps of distinct domains, and N ∗ M
the union of administrative maps of distinct domains. These uses of the (overloaded)
operator ∗ are treated commutatively and associatively. For Σ = (S ,Γ,H) we write
Σ ∗ K for (S ,Γ,K ∗ H).

3.2. Judgements and proof rules

The unary proof system is built from two judgement forms, namely a small-step
judgement form, U ` ` : Σ,N ⇒ Π,M, L, and a big-step judgement form, U ` ` :
Σ,N ⇓ H, γ,M. Here, Σ andΠ range over (not necessarily closed) abstract states, ` over
labels, H over abstract heaps, L over sets of labels, and N and M over administrative
maps. Furthermore, U ranges over (unary) proof contexts, which are sets of entries of
the form (`i, (Σi,Ni,Hi, γi,Mi)).

The separation into two judgement forms follows the structure of the operational
semantics, i.e. the two forms are defined mutually recursively and apply to single in-
structions and method bodies in a similar way as the operational rules.

A first intuitive reading of a small-step judgement U ` ` : Σ,N ⇒ Π,M, L is
that whenever P ` s, ` → t, `′ and s satisfies Σ, then t satisfies Π and `′ ∈ L. Sim-
ilarly, a judgement U ` ` : Σ,N ⇓ H, γ,M implies that for P ` s, ` ⇓ h, v with s
satisfying Σ, ([v], [], h) satisfies ([γ], [],H). Additionally, the terminal administrative
components M in both judgements contain the type information of any colours intro-
duced by the subject phrases, and are always an extension of the initial maps N. The
formal definition of the interpretation includes the Kripke-style extension mentioned
in the introduction and will be given once the proof rules have been introduced, in
Section 3.4.

3.2.1. Syntax-directed proof rules
Figure 11 presents a representative selection of the syntax-directed unary proof

rules. The first rule, UI treats basic instruction forms. The cases for load x,
store x, getf C. f , and putf C. f merely transfer abstract entities between the various
state components. The next three instruction forms introduce fresh colours, which are
inserted into the administrative map N with the appropriate type. Note that while the
rules for instruction forms const i and new C look similar, their effect is slightly differ-
ent, since object colours are interpreted in a separating fashion. Indeed, the freshness

16

ι S (ι) N′(ι) Π(ι) Φ(ι)
load x S N (γ :: S ,Γ,H) Γ↓x = γ
store x γ :: S ′ N (S ′,Γ[x 7→ γ],H)

getf C. f γ1 :: S ′ N (γ2 :: S ′,Γ,H)
{

H↓γ1 = (D, F)
F↓ f = γ2

putf C. f γ1 :: γ2 :: S ′ N (S ′,Γ,K)


H↓γ2 = (D, F)
F′ = F[f 7→γ1]

K = H[γ2 7→ (D, F′)]
const i S N[γ 7→ int] (γ :: S ,Γ,H) γ < dom N

binop ⊕ γ1 :: γ2 :: S ′ N[γ 7→ int] (γ :: S ′,Γ,H)
{
γ < dom N
N↓γi = int

new C S N[γ 7→ tp] (γ :: S ,Γ,K)


γ < dom N, C ≤ D

tp = class(D)
K = H[γ 7→ (C, [])]

ifeq `′ γ :: S ′ N (S ′,Γ,H)
goto `′ S N (S ,Γ,H)

UI

P(`) = ι Φ(ι) L(`, ι) =


{`′} if ι = goto `′

{` + 1, `′} if ι = ifeq `′

{` + 1} otherwise
U ` ` : (S (ι),Γ,H),N ⇒ Π(ι),N′(ι), L(`, ι)

UIV

P(`) = invVirt C.m params(C,m) = [x1, . . . , xn] H↓γ0 = (D, F)
∀ C′ ≤ D. U ` (C′,m, 0) : ([], [xi 7→ γi, this 7→ γ0],H),N ⇓ K, γ,N′

U ` ` : ([γ1, . . . , γn, γ0]@S ,Γ,H),N ⇒ (γ :: S ,Γ,K),N′, {` + 1}

UV
P(`) = vreturn

U ` ` : (γ :: S ,Γ,H),N ⇓ H, γ,N

Figure 11: Unary proof system: selected syntax-directed rules

17

UR
U ` ` : Σ,N ⇒ Π,N′, L ∀`′ ∈ L. U ` `′ : Π,N′ ⇓ H, γ,M

U ` ` : Σ,N ⇓ H, γ,M

UA
(`, (Σ,N,H, γ,M)) ∈ U
U ` ` : Σ,N ⇓ H, γ,M

UBSF
U ` ` : Σ,N1 ⇓ K, γ,M

U ` ` : Σ ∗ H,N1 ∗ N ⇓ K ∗ H, γ,M ∗ N

USSF
U ` ` : Σ,N1 ⇒ Π,M, L

U ` ` : Σ ∗ H,N1 ∗ N ⇒ Π ∗ H,M ∗ N, L

UR

(Σ,N)
ϕ
−→ (Σ1,N1) (Π,N′)

ξ
−→ (Π1,N′1)

∀ γ γ′.ϕ(γ) = γ′ → ξ(γ) = γ′ injectiveOndom ξ\dom ϕ(ξ)
ImgOf (ξ, dom ξ \ dom ϕ) ∩ ImgOf (ξ, dom ϕ) = ∅

U ` ` : Σ,N ⇒ Π,N′, L
U ` ` : Σ1,N1 ⇒ Π1,N′1, L

GHP

U ` ` : (S ,Γ,H),N ⇓ K, γ,N′ dom H ⊆ dom K − δ N ⊆ N′

δ < Dom((S,Γ,H)) ∪ dom N ∪ Dom(([γ], [],K − δ))
U ` ` : (S ,Γ,H),N ⇓ K − δ, γ,N′

GN

U ` ` : Σ,N ⇓ K, γ,N′

N ⊆ N′ − δ δ < Dom(Σ) ∪ Dom(([γ], [],K))
U ` ` : Σ,N ⇓ K, γ,N′ − δ

Figure 12: Unary proof system: selected structural rules

of γ with respect to N in the rule for new C corresponds to the freshness of the asso-
ciated runtime value (as a new object is allocated), while no such freshness condition
is guaranteed to hold for the integer values. The rule for conditionals simply pops the
topmost entry off the abstract operand stack. The rule for unconditional jumps is sim-
ilar. In all rules, the component L collects the (static) control flow successors of the
label in focus.

Rule UIV treats virtual method calls. The (abstract) receiver object is extracted
from the abstract heap (determined by the number of formal parameters associated with
the invoked method). Following the behavioural subtyping approach, we then require
that any overriding method of C.m in some subclass C′ of the (abstract) receiver’s class
D satisfies the big-step specification given by the abstract reflection of argument and
return value passing.

Neither the rules for field access nor UIV include the side condition D ≤ C.
As the operational judgement occurs negatively in the interpretation of proof rules (see
Section 3.4), the side conditions of the operational rules guarantee that the expected
subclass relationships hold whenever an execution step succeeds.

Finally, the rule UV describes the behaviour of a return instruction. We omit
the rules for static methods and further basic instructions (pop, dup, etc.).

18

3.2.2. Structural proof rules
Figure 12 presents selected structural rules – the rule set is necessarily incomplete

due to the restriction to static verification technology.
Rule UR injects small-step typing judgements into the big-step judgement,

similar to the operational rule R. The hypotheses require that Π,N′ is valid at all
one-step control flow successors `′ of `, and that the phrases at these program points
all satisfy U ` `′ : Π,N′ ⇓ H, γ,M.

Rule UA extracts an assumption from the context, similar to an axiom in Hoare
logic. As proof contexts are arbitrary sets, polyvariance is obtained by associating
multiple specifications with a single label.

Frame rules are given for both judgement forms, and allow us to embed a judge-
ment in a context with additional abstract objects and/or colours. The frame rule of
separation logic [12] imposes a side condition on formulae that are framed onto the
hypothetical judgement. This side condition requires that no free variable of such a
formula is modified by the program phrase. The objects framed onto judgements in
our case are not arbitrary formulae but only abstract heaps and administrative maps
and do thus not contain free variables or other items that could be directly modified by
the program. Thus, we do not need to impose additional side conditions. We will see
applications of the frame rules later, in the verification of heap-allocated data structures
in Section 5.

Rule UR allows us to recolour judgements according to (type-preserving) func-
tions ϕ and ξ. The side conditions are defined and motivated as follows.

(Σ,N)
ϕ
−→ (Σ1,N1) indicates that Σ1 and N1 are, respectively, the images of Σ and N
under ϕ. We require that ϕ is injective on ODom(N), so that distinctness of
objects is preserved, and that ϕ respects N, i.e. that ϕ(γ) = ϕ(δ) implies N↓γ =

N↓δ. Similar conditions apply to (Π,N′)
ξ
−→ (Π1,N′1).

∀ γ γ′.ϕ(γ) = γ′ → ξ(γ) = γ′ guarantees that ξ extends ϕ, i.e. that the recolouring of
the final state respects the recolouring of the initial state.

injectiveOndom ξ\dom ϕ(ξ) stipulates that colours not present in the initial state can only
be recoloured injectively. For example, suppose Π and N′ include two colours
γ , δ not present in Σ and N, with N′ ↓γ = N′ ↓δ = int. The corresponding
positions in a concrete state satisfying Π thus contain integer values which the
derivation U ` ` : Σ,N ⇒ Π,N′, L could not guarantee to be identical. The
condition ξ(γ) , ξ(δ) ensures that this potential non-equality is also captured by
Π1.

ImgOf (ξ, dom ξ \ dom ϕ) ∩ ImgOf (ξ, dom ϕ) = ∅ prevents colours present in (Π,N′)
but not in (Σ,N) to be identified by ξ with colours in (Σ,N). For example, a
colour γ < dom N ∪ ODom(Σ) with γ ∈ ODom(Π) represents an object freshly
allocated by the phrase located at `, and should thus not be equated with previ-
ously allocated objects.

As an example, consider the situation in Figure 13 (top). The initial abstract state
contains one object and two integer colours. The final state contains two further integer

19

class C

class C

int

int

int

int

N1

(empty)

∆T

f 1

f 2

C

f 1

C

K

(empty)

Γ

class C

int

int

NS

f 1

C

H

S’ N’

class C

int

Γ ’

(empty)

Γ H’

1f

C

∆ ’

(empty)

T ’ K ’

f 1

C

f 1

f 2

C

N1
’

class C

int

int

class C

int

(empty)

Figure 13: Rule UR: example

colours, and a further object. The following application of rule UR justifies the
more restrictive judgement in Figure 13 (bottom). The renaming function for the initial
state, ϕ, identifies M and O as F, and acts as the identity map on �. The renaming
function for the terminal state, ξ, extends ϕ by additionally mapping ◦ to • and C to
J. It is easily verified that all side conditions of the rule are satisfied. In particular, the
colours that are present in ((T,∆,K),N1) but not in ((S ,Γ,H),N), namely ◦, C and B,
are mapped injectively and to colours distinct from the image of ϕ.

By admitting renamings that are not entirely injective, the renaming rule thus in-
corporates aspects of a subtyping rule in type systems, or of a rule of consequence in
program logics, albeit on the level of judgements.

The two final rules, GHP and GN, remove unreachable objects and
unused colours from the final abstract states of judgements, using the operation . − .
discussed in Section 2. The other side conditions ensure that only colours allocated by
the subject phrase may be garbage-collected, in order not to violate the preservation
of colours mandated by the interpretation of judgements (see below, Definition 5). As
an example consider the judgement depicted in Figure 14 (top), which indicates that a
phrase allocates a new object ◦ with a possibly fresh integer value in field g2. As the
object colour is unreachable from the rest of the terminal state, rule UGHP
applies, and the object may be deleted from the abstract state (second row). Its colour,
and the integer colour O, are subsequently removed in the final two rows. All deletions
are possible as the deleted objects and colours do not occur in the initial state.

Definition 3. We call a derivation for the big-step judgement form progressive if it

20

(empty)

Γ

class C

int

NS

f 1

f 2

C

H γ N ’

int

int

class D

class C

f 2

f 1

C

3g

2g

1g

D

K

(empty)

Γ

class C

int

NS

f 1

f 2

C

H N ’

int

int

class D

class C

γK −

f 1

f 2

C

(empty)

Γ

class C

int

NS

f 1

f 2

C

H γ N’ −

int

int

class C

K −

f 1

F2

C

(empty)

Γ

class C

int

NS

f 1

f 2

C

H N’ − −

int

class C

γK −

f 1

f 2

C

Figure 14: Rules UGHP and UGN : example

21

int C.m1(int y){

[0] load y
[1] dup

[2] load this
[3] swap

[4] putf C.A
[5] vreturn

}

Figure 15: Bytecode for method C.m1 from Figure 1

contains at least one application of rule UV or rule UR. Context U is verified,
notation ` U, if for each (`, (Σ,N,H, γ,M)) ∈ U there is a progressive derivation with
final sequent U ` ` : Σ,N ⇓ H, γ,M.

3.3. Example verification

Consider the bytecode in Figure 15, which represents the result of compiling method
C.m1 from Section 1.1, Figure 1. We verify that this code satisfies the expected spec-
ification relating the final content of field A to the argument y. To that effect we show
that ∅ ` (C, m1, 0) : Σ,N ⇓ H, δ,N is derivable for

Σ = ([], [this 7→ γ, y 7→ δ], [γ 7→ (C, F)]),
H = [γ 7→ (C, F[A 7→ δ])],
N = [δ 7→ int] ∗ [γ 7→ class(C)],

and arbitrary3 F. The proof proceeds essentially in a syntax-directed fashion: the list
of rule applications is UR, UL, UR, UD, UR, UL, UR,
US, UR, UP, UV. All side conditions are easily discharged (we
silently use the assumption this , y).

3.4. Interpretation and Soundness

We first give the formal definition of the non-Kripke-extended interpretation of
judgements mentioned at the beginning of Section 3.2.

Definition 4. Label ` conforms to specification Σ,N,Π,M, notation |= Σ,N
`
−→ Π,M, if

for all s, I, h, and v with s |=I
N Σ andP ` s, ` ⇓ h, v, there is some J with ([v], [], h) |=J

M Π

such that

a) for all γ ∈ ODom(N), Jγ = Iγ holds, and
b) for all γ ∈ dom N, ~γ�([v],[],h)

Π,J ⊆ ~γ�s
Σ,I .

This definition requires that any terminating execution commencing in some state s
that satisfies Σ (with respect to N and I) leads to a terminal state that satisfies Π (with
respect to M and J), such that the interpretation of each colour γ defined in the initial
administrative map N is preserved. In particular,

3This is a local specification in the sense of [12] as no additional heap objects are specified.

22

a) the interpretation J is an extension of I on object colours (hence the tracked ob-
jects remain in place),

b) the interpretation of γ in the terminal state ([v], [], h) (with respect to Π and J)
is contained in the interpretation of γ in the initial state s (with respect to Σ and
I). If γ ∈ Dom(Σ) holds, then the set ~γ�s

Σ,I is in fact a singleton set, by the
definition of s |=I

N Σ. Consequently, the set ~γ�([v],[],h)
Π,J is in this case either the

same singleton set (hence the represented values are identical) or is empty (if γ <
Dom(Π)). If γ < Dom(Σ) holds, then ~γ�s

Σ,I = ∅ follows, hence ~γ�([v],[],h)
Π,J = ∅.

The condition ~γ�([v],[],h)
Π,J ⊆ ~γ�s

Σ,I thus relates the interpretation of γ in the final
state of a judgement to the interpretations of γ in the initial state. This enables the
tracking of copies across method calls.

Note that these conditions only concern colours present in the initial map N. Also note

that |= Σ,N
`
−→ Π,M trivially holds if Σ fails to be closed w.r.t. N, as s |=I

N Σ would be
violated, cf. Definition 2. Furthermore, if Σ is closed w.r.t. N (and ` terminates) then Π
is closed w.r.t. M as well, because of ([v], [], h) |=J

M Π .
The full interpretation of a big-step judgement now requires conformance to all

specifications that arise as separated extensions of the abstract states occurring in the
judgement, and includes syntactic constraints that enforce the preservation of abstract
entities.

Definition 5. Label ` is sound for (Σ,N) and (H, γ,M), notation

|= ` : Σ,N ⇓ H, γ,M

if for Σ = (S ,Γ,K), the following three properties hold

1. dom K ⊆ dom H
2. M contains N, and

3. for all H′ and N′, |= Σ ∗ H′,N ∗ N′
`
−→ ([γ], [],H) ∗ H′,M ∗ N′.

The first two conditions are syntactic and guarantee that abstract colours and objects are
(in a type-respecting fashion) preserved. The third condition represents the semantic
guarantee and asserts conformance to all specifications that arise by framing some H′

onto the pre-and post-heaps, and some N′ onto the administrative maps. The implicit
side condition of operator ∗ ensures dom H′ ∩ dom H = ∅ and dom N′ ∩ dom M = ∅,
i.e. only distinct heaps and administrative maps are framed onto the entities mentioned
explicitly in judgements. In agreement with the syntactic conditions on judgements, Σ
and ([γ], [],H) are not required to be closed w.r.t. N and M, respectively. However, in
combination with Definitions 4 and 2, the third clause makes a non-trivial claim only
for those H′ and N′ that make Σ∗H′ and ([γ], [],H)∗H′ closed w.r.t. N∗N′ and M∗N′,
respectively.

The interpretation of small-step unary judgements is similar and hence omitted.
The following theorem establishes the soundness of the unary proof system.

Theorem 1. Let ` U and U ` ` : Σ,N ⇓ H, γ,M. Then |= ` : Σ,N ⇓ H, γ,M.

23

T

ba c

∆

1E

f 1

f 2

D2

1g

g 2

KS

x y

Γ

C1

f 1

3f

f 2

D1

g1

2g

H

int

int

class D

class E

int

class C

N

Figure 16: An example RSD

The proof of this theorem employs a relativised notion of soundness that bounds the
derivation height of operational judgements. In particular, an auxiliary lemma estab-
lishes relativised soundness by induction on the proof rules, in the style of formalised
soundness proofs of Hoare logics as presented by Kleymann and Nipkow [26, 27].
However, due to the mutually recursive dependence, the auxiliary lemma is performed
by a joint induction on the two judgement forms.

The requirement that derivations justifying entries of verified contexts contain at
least one progressive rule forces these justifications to actually inspect their subject
code block. In particular, a justification that establishes a context entry for a label
that represents a loop header by immediately applying the axiom rule is not permit-
ted. This technique is an adaptation of soundness proofs for proof rules for recursive
methods [27] to low-level languages and was first presented in [28].

For the details of the proof, the interested reader is referred to [11].

4. Relational proof system

We now turn to the relational system, the core contribution of our article.

4.1. Relational state descriptions

Definition 6. A relational state description (RSD) is a structure φ = (Σ,N,Π) where Σ
and Π are abstract states and N is an administrative map. φ is closed if Σ and Π are
closed with respect to N.

Example. Figure 16 extends the abstract state Σ from Figure 9 to the RSD φ = (Σ,N,Π)
by defining abstract state Π = (T,∆,K) and extending the administrative map N ap-
propriately. Colours � and � occur in both abstract states. The two operand stacks
are of different height, and the abstract stores refer to different variables. RSD φ is
closed if D2 ≤ D and E1 ≤ E hold, in addition to the earlier constraints C1 ≤ C and
D1 ≤ D.

24

a4

a5

O’

a5

2E

a4f 1

f 2 42

a4

D3

g3 33

g2 59

a5g1

k

a5

a

42

b

59

c

τ

Figure 17: A concrete state t = (O′, τ, k) satisfying the abstract state Π from Figure 16

For φ = (Σ,M,Π) we write φ ∗ (H,N,K) for (Σ ∗ H,M ∗ N,Π ∗ K).
RSD are interpreted over state pairs, relative to functions I and J that interpret the

object colours in φ as concrete addresses.

Definition 7. (RSD interpretation) A pair s, t of states satisfies RSD φ = (Σ,N,Π) with
respect to interpreting functions I and J, notation (s, t) |=I,J φ, if

• s |=I
N Σ and t |=J

N Π , and

• for all γ ∈ Dom(Σ) ∩ Dom(Π), N↓γ = int implies ~γ�s
Σ,I = ~γ�

t
Π,J .

The first condition in this definition simply requires the two states to satisfy their ab-
stract counterparts. The second condition requires for any integer colour γ occurring in
both Σ and Π, that the runtime values interpreting γ in s and t (each such value being
uniquely determined by the first condition) should be equal. Definition 7 thus defines
the relation paraphrased as s =φ t in the introduction.

Example. Continuing our example, state t = (O′, τ, k) in Figure 17 satisfies abstract
state Π and N from Figure 16 with respect to an interpreting function J with J(�) = a4
and J(�) = a5 for a4 , a5, where D3 ≤ D2 and E2 ≤ E1. Again, the concrete state
contains a field that is not tracked by the abstract state.

Together with state s from Figure 10 and φ as in Figure 16, we have (s, t) |=I,J φ:
the shared integer colour � is interpreted by the same number in both states.

The reader who is familiar with the work of Banerjee-Naumann [23] and Barthe et
al. [6] may have expected Definition 7 to include some explicit partial bijection β on
addresses, capturing when objects in the heaps of s and t are indistinguishable. For
example, one might have expected a further condition like

for all γ ∈ Dom(Σ) ∩ Dom(Π), and all C,N↓γ = class(C) implies h(a) ∼β h′(a′)

where a = ~γ�s
Σ,I , a′ = ~γ�t

Π,J , and h and h′ are the heaps of s and t, respectively. In the
cited papers, object indistinguishability o ∼β o′ requires the objects o and o′ to be of a
subclass of C and to contain indistinguishable values in all visible fields, where value
indistinguishability is given by containment in β on address values and by equality on
other values. This discipline is enforced in the rules of [23] and [6] by only allowing
low values to be written into such fields.

25

Given an RSD φ = (Σ,N,Π) and its interpretation (I, J), it is easy to see that

β =
⋃

γ∈dom H∩dom K

(Iγ, Jγ)

where Σ = (S ,Γ,H) and Π = (T,∆,K) is indeed a partial bijection. This relation
plays a similar role as the partial bijections of Banerjee-Naumann and Barthe et al. in
that it captures when objects may be considered correlated. However, the fact that β is
determined by φ and (I, J) means that there is no need for us to introduce it formally. In
our example, the induced partial bijection is the singleton {(a1, a4)}, as these locations
are the images of the shared colour � under I and J, respectively.

As a further difference, the interpretation of RSD’s does not require objects residing
at related addresses to be low equivalent, i.e. to contain indistinguishable values in
public fields. As we do not require fields to be classified upfront according to their
security level, there is no need to define an explicit notion of object indistinguishability.
Instead, RSD’s track the content of fields in a more fine-grained fashion, and our proof
rules do not constrain field assignments according to the visibility of the assigned value.

If, however, a classification of fields happens to be applicable, we can stipulate that
RSD φ = (Σ,N,Σ′) satisfies object indistinguishability by defining

H ∼GN H′ = ∀ γ C D F D′ F′. (N↓γ = class(C)&H↓γ = (D, F)&H′↓γ = (D′, F′))
=⇒ ∀ f ∈ G. F↓ f = F′↓ f

and then requiring that for Σ = (S ,Γ,H) and Σ′ = (S ′,Γ′,H′), H ∼GN H′ holds, where
G contains the field names (statically) considered public.

Thus, RSD’s offer a mechanism to talk about public and private variables or fields
without having to introduce security levels formally: for example, an integer variable
that is associated with an identical colour in both abstract states amounts to the variable
being low at the pair of program points where the RSD is valid. In contrast, if this vari-
able is associated with different colours in the two abstract stores then neither equality
nor non-equality of the corresponding runtime values are guaranteed. The latter situ-
ation thus amounts to the variable being private at such a pair of program points. Of
course, these two cases are only special cases as a variable may behave differently at
different pairs of program points, and the two abstract states of an RSD are not required
to be formulated with respect to the same sets of variables. In this sense, RSD’s are also
more flexible than assertions of the form xn that appear in Amtoft et al.’s logic [14].
On the other hand, the generalisation of these assertions to agreements by Banerjee and
Naumann [29] is not presently supported by RSD’s, as abstract locations in our case
represent single locations rather than arbitrary regions.

4.2. Judgements and proof rules

The relational system employs a single judgement form, G ` ` ∼ `′ : φ→ ψ. Here,
φ and ψ are RSD’s, ` and `′ are program labels, and G is a relational proof context with
entries of the form ((`i, `

′
i), (φi, ψi)). These judgements are interpreted in a big-step

fashion: a pair of terminal states is expected to satisfy ψ whenever the pair of initial

26

UL

U ` ` : Σ,N ⇒ Σ1,N1, L ` U
∀ `1 ∈ L. G ` `1 ∼ `

′ : (Σ1,N1,Π)→ ψ

G ` ` ∼ `′ : (Σ,N,Π)→ ψ

CC

P(`) = const i P(`′) = const i γ < dom N
φ = ((γ :: S ,Γ,H),N[γ 7→ int], (γ :: T,∆,K))

G ` ` + 1 ∼ `′ + 1 : φ→ ψ

G ` ` ∼ `′ : ((S ,Γ,H),N, (T,∆,K))→ ψ

BB

P(`) = binop ⊕ P(`′) = binop ⊕
γ < dom N N↓γi = int M = N[γ 7→ int]

φ = ((γ :: S ,Γ,H),M, (γ :: T,∆,K))
G ` ` + 1 ∼ `′ + 1 : φ→ ψ

ξ = ((γ1 :: γ2 :: S ,Γ,H),N, (γ1 :: γ2 :: T,∆,K))
G ` ` ∼ `′ : ξ → ψ

NN

P(`) = new C1 P(`′) = new C2 γ < dom N
C1 ≤ C C2 ≤ C N′ = N[γ 7→class(C)]
H′ = H[γ 7→ (C1, [])] K′ = K[γ 7→ (C2, [])]

φ = ((γ :: S ,Γ,H′),N′, (γ :: T,∆,K′))
G ` ` + 1 ∼ `′ + 1 : φ→ ψ

G ` ` ∼ `′ : ((S ,Γ,H),N, (T,∆,K))→ ψ

II

P(`) = ifeq `1 P(`′) = ifeq `′1 N↓γ = int
G ` ` + 1 ∼ `′ + 1 : ((S ,Γ,H),N, (T,∆,K))→ ψ

G ` `1 ∼ `
′
1 : ((S ,Γ,H),N, (T,∆,K))→ ψ

G ` ` ∼ `′ : ((γ :: S ,Γ,H),N, (γ :: T,∆,K))→ ψ

RR

P(`) = vreturn P(`′) = vreturn
ψ = (([γ], [],H),N, ([γ′], [],K))

G ` ` ∼ `′ : ((γ :: S ,Γ,H),N, (γ′ :: T,∆,K))→ ψ

Figure 18: Relational proof system: syntax-directed rules I

states satisfied φ. In particular, the interpretation captures termination-insensitive non-
interference, i.e. the judgement is vacuously valid if either of the two executions fails to
terminate. Again, the formal interpretation of judgements is postponed until the rules
and some examples have been given.

Figures 18 to 20 present an excerpt of the relational proof system. The first rule
of Figure 18 injects the small-step unary proof system into the left component of the
relational proof system. Thus, operations that are not correlated between the two exe-
cutions are treated independently. Note that this includes one-sided object allocations,
method invocations, and conditionals. The second hypothesis requires us to prove a
specification for code pairs comprising a control flow successor of ` in the left com-
ponent, and the unmodified label `′ in the right component. The specification for the
label pair (`1, `

′) is given by updating the initial RSD according to the effect of the
instruction at `. A similar rule for injecting unary derivations into the right component
is omitted.

The rules CC and NN capture correlated executions of instruction
forms const i and new C. Again, these are modelled by choosing fresh colours, which

27

IVIV

P(`) = invVirt C1.m1 P(`′) = invVirt C2.m2
params(C1,m1) = [x1, . . . , xn] params(C2,m2) = [x′1, . . . , x

′
m]

G ` ` + 1 ∼ `′ + 1 : ((γ :: S ,Γ,H′),N′, (γ′ :: T,∆,K′))→ ψ′

H↓γ0 = (D1, F1) D1 ≤ C1 K↓γ′0 = (D2, F2) D2 ≤ C2
ψ = (([γ1, . . . , γn, γ0]@S ,Γ,H),N, ([γ′1, . . . , γ

′
m, γ

′
0]@T,∆,K))

φ = (([], [xi 7→ γi, this 7→ γ0],H),N, ([], [x′i 7→ γ′i , this 7→ γ′0],K))
φ′ = (([γ], [],H′),N′, ([γ′], [],K′))

∀D′1 ≤ D1. ∀D′2 ≤ D2. G ` (D′1,m1, 0) ∼ (D′2,m2, 0) : φ→ φ′

G ` ` ∼ `′ : ψ→ ψ′

ISIS

P(`) = invStat C1.m1 P(`′) = invStat C2.m2
params(C1,m1) = [x1, . . . , xn] params(C2,m2) = [x′1, . . . , x

′
m]

G ` ` + 1 ∼ `′ + 1 : ((γ :: S ,Γ,H′),N′, (γ′ :: T,∆,K′))→ ψ
φ = (([], [xi 7→ γi],H),N, ([], [x′i 7→ γ′i],K))

φ′ = (([γ], [],H′),N′, ([γ′], [],K′))
G ` (C1,m1, 0) ∼ (C,m2, 0) : φ→ φ′

G ` ` ∼ `′ : (([γ1, . . . , γn]@S ,Γ,H),N, ([γ′1, . . . , γ
′
m, γ

′
0]@T,∆,K))→ ψ

ISIV

P(`) = invStat C1.m1 P(`′) = invVirt C2.m2
params(C1,m1) = [x1, . . . , xn] params(C2,m2) = [x′1, . . . , x

′
m]

G ` ` + 1 ∼ `′ + 1 : ((γ :: S ,Γ,H′),N′, (γ′ :: T,∆,K′))→ ψ
K↓γ′0 = (C, F) C ≤ C2

φ = (([], [xi 7→ γi],H),N, ([], [x′i 7→ γ′i , this 7→ γ′0],K))
φ′ = (([γ], [],H′),N′, ([γ′], [],K′))

∀ C′ ≤ C. G ` (C1,m1, 0) ∼ (C′,m2, 0) : φ→ φ′

G ` ` ∼ `′ : (([γ1, . . . , γn]@S ,Γ,H),N, ([γ′1, . . . , γ
′
m, γ

′
0]@T,∆,K))→ ψ

Figure 19: Relational proof system: methods invocation rules

are now inserted in both abstract states concurrently. In addition, CC enforces
the equality relation expected by the interpretation of RSD’s. A similar side condition
is not imposed in rule NN, since addresses are only related by the partial bijection
that is implicitly determined by the interpretation of colours. If no correlation between
the objects is desired, two applications of rule UI (case N) may be used, one
on each side. The class name C may be freely chosen subject to C1 ≤ C and C2 ≤ C.
Rule BB treats correlated operations on integers. Future work may generalise this
rule so that algebraic properties of operators ⊕ may be exploited [20].

Rule II is the rule for correlated conditionals, which applies if the top colours of
the abstract operand stacks are identical. Under this condition, the two branches will
evaluate identically at runtime. Hence, only two hypotheses are required, one for each
possible outcome. Non-correlated branches may be verified using two applications of
the unary rule for conditionals (one application on each side), resulting in subgoals
corresponding to all four combinations of possible outcomes of the branch conditions.
Note that the program labels ` and `′, and also the segments S and T of the abstract
operand stacks, may well be different, resulting in additional flexibility compared to
the traditional typing rule for low conditionals.

Rule RR models the effect of return instructions. The abstract colours that are
returned need not be identical.

Figure 19 collects rules for correlated method invocations. The rule for correlated

28

A
((`, `′), (ψ, φ)) ∈ G
G ` ` ∼ `′ : ψ→ φ

F
G ` ` ∼ `′ : φ→ ψ

G ` ` ∼ `′ : φ ∗ (H,N,K)→ ψ ∗ (H,N,K)

R

G ` ` ∼ `′ : ψ→ φ ψ
ϕ
−→ ψ′ φ

ξ
−→ φ′

∀ γ γ′.ϕ(γ) = γ′ → ξ(γ) = γ′ injectiveOndom ξ\dom ϕ(ξ)
ImgOf (ξ, dom ξ \ dom ϕ) ∩ ImgOf (ξ, dom ϕ) = ∅

G ` ` ∼ `′ : ψ′ → φ′

UU

dom N′ ∩ dom N′′ = ∅ ` U ` V
U ` ` : Σ,N ⇓ H, γ, (N ∗ N′) V ` `′ : Π,N ⇓ K, δ, (N ∗ N′′)
G ` ` ∼ `′ : (Σ,N,Π)→ (([γ], [],H),N ∗ N′ ∗ N′′, ([δ], [],K))

Figure 20: Relational proof system: structural rules (excerpt)

class C

int

int

’N1S1’ Γ1’

(empty)

f 1

f 2

C

’H1 T1’ ∆ 1’

(empty) f 2

f 1

C

K1’

int

N’S ’ ’Γ

(empty)

H’

(empty)

T ’ ’∆

(empty)

’K

(empty)

int

int

NS

(empty)

Γ

(empty)

H T

(empty)

∆

(empty)

K N1

class C

int

int

int

S1 Γ1

(empty)

H1

f 2

f 1

C

T1 ∆ 1

(empty)

K1

f 2

f 1

C

Figure 21: Rule R: example

calls of (not necessarily identical) virtual methods, IVIV, is similar to the unary
rule UIV, but the hypothesis on (overriding definitions of) the invoked methods
(i.e. the final hypothesis) exploits correlations between the method bodies. The rules
for correlated static methods, and a correlation pair comprising a virtual and a static
method, are defined in a similar way.

Selected structural rules are shown in Figure 20 and include an axiom rule, a frame
rule, and a rule for renaming that is similar to its unary counterpart. The side condition
ψ

ϕ
−→ ψ′ of the latter rule is defined by (Σ,N)

ϕ
−→ (Σ′,N′) and (Π,N)

ϕ
−→ (Π′,N′) where

ψ = (Σ,N,Π) and ψ′ = (Σ′,N′,Π′), and similarly for the side condition φ
ξ
−→ φ′. The

other side conditions are as in Section 3.2.2. An example for a relational renaming
is shown in Figure 21. The two (integer) colours O and M are merged to F. Con-
tinuing our comparison to traditional formalisms for non-interference we observe that
this rule has a similar effect as the subtyping rule in the flow-sensitive system of Hunt
and Sands [25]. The cited rule sanctions to lower the security types associated with
variables in the initial variable environment. In line with the rough correspondence of
non-correlated to high-security values and of correlated values to low-security values,
a similar effect is exhibited by rule R. Values that are not required to be correlated

29

int C.m2(int l; int h){

[0] load l
[1] store x
[2] load h
[3] ifeq 13
[4] const 3
[5] store x

[6] load l
[7] load x
[8] binop plus
[9] new C

[10] swap
[11] invVirt C.m1

[12] vreturn
[13] load x
[14] const 3
[15] binop plus
[16] store x
[17] new C

[18] dup
[19] load x
[20] putf C.A
[21] getf C.A
[22] vreturn

}

Figure 22: Bytecode for method C.m2 from Figure 1

between the two executions in the hypothesis may be entangled by correlating them in
the conclusion. Note that this operation is only possible for colours occurring already
in the initial RSD. Indeed, merging colours freshly introduced in the final RSD would
be unsound, as the conclusion would assert the equality of certain values that the hypo-
thetical judgement could not show to be equal. As in rule UR, renaming affects the
entire judgement, imposes distinctness and injectivity conditions on the recolouring of
the final RSD, and does not permit to merge objects.

The final rule, UU, covers cases where the two subject phrases execute inde-
pendently until the end of the current method frames, by injecting two big-step unary
judgements. Colours that are freshly introduced by the two phrases must not overlap,
and are merged with the colours already in use.

Definition 8. A relational derivation is called progressive if it contains at least one
application of a syntax-directed rule, and (relational) context G is verified, notation
` G, if each entry of G is justified by a progressive derivation.

4.3. Example verifications
Continuing with the the example from Figure 1, we verify non-interference of

method C.m2, the bytecode of which is shown in Figure 22. We derive the judgement
∅ ` (C, m2, 0) ∼ (C, m2, 0) : φ→ ψ where

φ = (([], [l 7→ γ, h 7→ δ], []),N, ([], [l 7→ γ, h 7→ ε], []))
N = [γ 7→ int] ∗ [δ 7→ int] ∗ [ε 7→ int]
ψ = (([β], [], [µ 7→ (C, [A 7→ β])]),M, ([β], [], [ν 7→ (C, [A 7→ β])]))

M = N ∗ [α 7→ int] ∗ [β 7→ int] ∗ [µ 7→ class(C)] ∗ [ν 7→ class(C))].

The proof applies unary rules on both sides (injected using rule UL or its counterpart
for the phrase on the right-hand side, UR) until the conditional is met (label 3). The
top elements of the abstract operand stacks at this point are δ and ε, hence rule II
is not applicable. We therefore apply the rule for unary conditionals twice (once on
each side), leading to proof branches for the label pairs (4, 4), (4, 13), (13, 4), and
(13, 13). All four branches proceed in a similar way. We apply rule CC for
the fresh colour α when arriving at an instruction pair (const 3, const 3) (i.e. at label
pairs (4, 4), (4, 14), (14, 4), and (14, 14)), and rule BB for the fresh colour β when

30

int C.m4 (int l){

[0] load l
[1] const 3
[2] binop plus

[3] store x
[4] new C
[5] load x

[6] putf C.A
[7] load x
[8] vreturn

}

Figure 23: Bytecode for method C.m4 from Section 1.1

arriving at an instruction pair (binop plus, binop plus) (i.e. at label pairs (8, 8), (8, 15),
(15, 8), and (15, 15)). The object allocations result in applications of the unary rule
UI (case N), using the fresh colour µ when applied to the left phrase and
the fresh colour ν when applied to the right phrase. The invocations of method m1
are discharged using the unary rule UIV. The hypothesis of this proof rule that
concerns the body of m1 is discharged by an invocation of the unary soundness result
for m1 (verified in Section 3.3 above), guarded by an application of rule UBSF
in order to remove additional colours. All other instructions are verified using the
unary syntax-directed rules, and the leaves of all proof branches are terminated by
applications of rule RR.

The program also satisfies the alternative specification

∅ ` (C, m2, 0) ∼ (C, m2, 0) : φ→ ψ

where φ is as above and

ψ = (([β], [], [µ 7→ (C, [A 7→ β])]),M, ([β], [], [µ 7→ (C, [A 7→ β])]))
M = N ∗ [α 7→ int] ∗ [β 7→ int] ∗ [µ 7→ class(C)].

Here, the colour µ occurs in both terminal abstract heaps, eliminating colour ν. The
proof correlates the allocation events using rule NN instead of applying the unary
rule UI (case N), but otherwise proceeds as before.

Next, we prove that m2 is equivalent to the simplified method m4, the bytecode of
which is shown in Figure 23. Again, two proofs are possible, differing on the correla-
tion of allocations events. The judgement for the correlated case is

∅ ` (C, m2, 0) ∼ (C, m4, 0) : φ→ (Σ,M,Σ)

where

φ = (([], [l 7→ γ, h 7→ δ], []),N, ([], [l 7→ γ], []))
N = [γ 7→ int] ∗ [δ 7→ int]
Σ = ([β], [], [µ 7→ (C, [A 7→ β])])

M = N ∗ [α 7→ int] ∗ [β 7→ int] ∗ [µ 7→ class(C)]

As the body of m4 consists of a single basic block, the proof tree consists only of two
branches, resulting from an application of the unary rule for conditionals to instruction
3 of the left phrase. The pairs (4, 1), (14, 1), (8, 2), (15, 2), (9, 4), and (17, 4) are
correlated using CC, BB and NN.

31

Java:
class D {

int m (int l, int h){

x:=l;

if h

then { z:=new C;

z.F:=l;

return z.F }

else return x

}

}

Bytecode:
class D {

int m (int l, int h){

[0]load l
[1]store x
[2]load h
[3]ifeq 6
[4]load x

[5]vreturn
[6]new C
[7]store z
[8]load z
[9]load l

[10]putf C.F
[11]load z
[12]getf C.F
[13]vreturn

}

}

Figure 24: Tracking the flow of values through objects

The uncorrelated case is proven by deriving

∅ ` (C, m2, 0) ∼ (C, m4, 0) : φ→ (Σ,M,Π)

where φ and Σ are as above and

Π = ([β], [], [ν 7→ (C, [A 7→ β])])
M = N ∗ [α 7→ int] ∗ [β 7→ int] ∗ [µ 7→ class(C)] ∗ [ν 7→ class(C)]

The proof uses the unary rules for the allocations but (in order to guarantee the equality
of the return values) nevertheless correlates the instruction pairs for the instruction
forms const 3 and binop plus.

Finally, we consider a program with branches that differ in their allocation be-
haviour. The verification of method D.m in Figure 24 garbage-collects the colour al-
located in instruction 6 using the rules GHP and GN in the terminal ab-
stract state of the positive branch. The overall judgement ∅ ` (D, m, 0) ∼ (D, m, 0) : φ→
(Σ,N,Σ) where

φ = (([], [l 7→ α, h 7→ β], []),N, ([], [l 7→ α, h 7→ γ], []))
Σ = ([α], [], [])
N = [α 7→ int] ∗ [β 7→ int] ∗ [γ 7→ int]

only contains colours that specify values present in the initial and final states. The
judgement represents the greatest common abstraction of the two branches in the sense
that only objects are included in the final state on whose existence the program con-
tinuation may rely. The proof consists of four branches, and each branch is verified
using the rule UU, i.e. by treating the two phrases independently. In all branches,
the phrases with initial label 4 are verified syntax-directly, using the sequence UR,
UI (case L), UV. The verification of the phrases for label 6 commences
with the rule sequence GN, GHP, UI (case N) and then proceed
syntax-directly. The colour that is introduced in the third proof step (i.e. the application
of rule UI (case N)) is precisely the one to which the garbage-collection rules
are applied in the first two proof steps.

The details of all proofs are available in [11].

32

4.4. Interpretation and soundness

Proceeding in a similar way as in Section 3.4 we first define when a pair of labels
conforms to a relational specification

Definition 9. Label pair (`, `′) conforms to specification φ, ψ, notation

|= φ
(`,`′)
−−−→ ψ,

if for all s, h, v, t, k, w, I, and J with

• (s, t) |=I,J φ,

• P ` s, ` ⇓ h, v, and P ` t, `′ ⇓ k,w,

there are I1 and J1 such that (([v], [], h), ([w], [], k)) |=I1,J1 ψ, and

a) for all γ ∈ ODom(N), I1γ = Iγ and J1γ = Jγ, and
b) for all γ ∈ dom N, ~γ�([v],[],h)

Ω,I1
⊆ ~γ�s

Σ,I and ~γ�([w],[],k)
Ξ,J1

⊆ ~γ�t
Π,J ,

where φ = (Σ,N,Π) and ψ = (Ω,M,Ξ).

Definition 9 corresponds to the property Safe from the introduction.
For ψ = ((S ′,Γ′,H′),N′, (T ′,∆′,K′)) and φ = ((S ,Γ,H),N, (T,∆,K)), we say that

ψ preserves φ, notation φ ≤ ψ, if dom H ⊆ dom H′, dom K ⊆ dom K′, and N′ contains
N.

As a special case, consider φ ≤ ψ where φ = ((S ,Γ,H),N, (T,∆,K)) and ψ =
((γ :: S ′,Γ′,H′),N′, (δ :: T ′,∆′,K′)) satisfy the object indistinguishability conditions
H ∼GN K and H′ ∼GN′ K′ from Section 4.1, for some fixed set G of public fields. Then,

|= φ
(`,`′)
−−−→ ψ guarantees that the two terminal heaps agree on the content of fields G

whenever the initial heaps do. Provided that γ = δ holds, this condition amounts to the
non-interference part of [6]’s notion of method safety (ignoring arrays and exceptions).

A second condition of [6]’s concept of method safety, heap effect safety, governs
which fields may be updated. The condition concerns both executions individually, and
is again formulated using the static visibility annotation of fields. In our setting, this
condition may again be expressed as object indistinguishability, namely by requiring
that H ∼GN H′ and K ∼GN K′ hold. Note that these (“horizontal”) conditions relate the
initial and final heaps of both abstract executions individually (and are both formulated
with respect to the initial administrative map N), in contrast to the “vertical” conditions
H ∼GN K and H′ ∼GN′ K′.

The following definition thus captures non-interference in the sense of [6] for our
language, with respect to statically fixed sets Flow and Xlow of public fields and vari-
ables.

Definition 10. The phrase with initial label ` is non-interferent w.r.t. |= φ
(`,`′)
−−−→ ψ

where φ = ((S ,Γ,H),N, (T,∆,K)) and ψ = ((γ :: S ′,Γ′,H′),N′, (δ :: T ′,∆′,K′)) if the
following conditions are satisfied

33

• (low equivalence of initial stores): for all x ∈ Xlow, there is some γ with Γ↓x =
γ = ∆↓x.

• (preservation of object indistinguishability): H ∼Flow
N K and H′ ∼Flow

N′ K′

• (heap effect safety): H ∼Flow
N H′ and K ∼Flow

N K′,

• (low-equality of return values): γ = δ

The proof system is more liberal than the one in [6] in that it does not enforce any
of the properties involving Flow or Xlow at intermediate program points.

The criterion with respect to which we prove the soundness of the proof system

corresponds to the predicate Interprete from the introduction. It requires |= φ
(`,`′)
−−−→ ψ

to hold for all separated extensions of (φ, ψ), similar to the development for the unary
system. Specialising this property to non-interference thus yields a stronger property
than [6].

Definition 11. Label pair (`, `′) is sound for φ and ψ, notation |= ` ∼ `′ : φ ⇒ ψ, if
φ ≤ ψ is satisfied and

|= φ ∗ (H,N,K)
(`,`′)
−−−→ ψ ∗ (H,N,K)

holds for all (H,N,K) that make the separated RSD-extension ψ ∗ (H,N,K) (and by
φ ≤ ψ, also φ ∗ (H,N,K)) well-defined.

Again, the interpretation requires colours and allocated abstract addresses to be pre-
served. This preservation may be compared to the condition imposed in [23, 6] man-
dating that the partial bijection relating the terminal heaps should contain the partial
bijection relating the initial heaps. However, our condition also preserves colours and
objects that occur in only one of the two initial states. We remark that even in the
absence of objects (and hence of the partial bijections), an invariant linking initial to
final states is usually included in the interpretation of previous type systems for inter-
ference. Indeed, without this stronger invariant (which in the case of type systems in
the style of Volpano et al. concerns the interpretation of judgements with pc-type high),
the security property one is really interested in (non-interference, whose formulation
indeed does not relate initial values to final ones) could not be established. Our condi-
tion requiring the preservation of colours (and their interpretation) may thus be seen as
a generalisation of the strengthened interpretation of previous type judgements.

The soundness result of the relational proof system is shown in a similar way as
Theorem 1, and in fact employs the result of Theorem 1 in the cases where the relational
proof rules have unary hypotheses.

Theorem 2. Let ` G and G ` ` ∼ `′ : φ→ ψ. Then |= ` ∼ `′ : φ⇒ ψ.

Again, the proof of this theorem follows the technique developed by Kleymann and
Nipkow [26, 27]. The absence of a small-step judgement makes the auxiliary induction

34

NIL Copy(){ [0]new NIL [1]vreturn}
CONS Copy(){
[0]load this [5]store t [10]store z [15]load t
[1]getf CONS.HD [6]load t [11]load z [16]putf CONS.TL
[2]store h [7]invVirt LIST.Copy [12]load h [17]load z
[3]load this [8]store t [13]putf CONS.HD [18]vreturn
[4]getf CONS.TL [9]new CONS [14]load z

}

Figure 25: Bytecode representation of the code from Figure 2

refer only to a single judgement form, but the relativised notion of validity takes the
derivation height indices of both phrases into account by bounding their sum.

In the soundness proofs of both derivation systems, the cases referring to the frame
rules are straight-forward due to the inclusion of the frame extension in the interpre-
tations. Of course, this extension complicates the proofs of some of the other rules,
in particular the renaming rules and the rules for garbage-collecting unused colours.
Here, the colours chosen by the renaming functions for extensions of the RSD’s in the
hypotheses are a priori not guaranteed to be distinct from the colours used in the exten-
sion of the concluding judgements. In order to deal with such clashes, the formalised
proofs involve intermediate renamings.

5. Heap-allocated data structures

We now turn to the verification of data structures that are laid out in the heap, and to
recursive methods operating on these structures. Using the code for copying lists given
in Section 1.1 (Figure 2) as a running example, we introduce meta-level operators that
define or specify components of RSD’s in a similar way as datatype representation
predicates constrain concrete states in Reynolds’ exposition of separation logic [12].
These specifications are then used to verify unary and relational properties of the copy-
ing routine. Figure 25 shows possible bytecode resulting from translating the code
from Figure 2.

5.1. Abstract representation predicates

Datatype representation predicates as employed in separation logic [12] are formu-
lae of the object logic that capture the representation of high-level data structures as a
collection of heap cells. Typically, the formulae specify collections of separated cells
(making critical use of separated conjunction) that are related to each other by heap
references and by logical invariants over values held inside the cells. The definition
of the predicates follows the structure of the high-level data types, for example using
structural induction.

In the absence of logical features that would enable the formulation of complex
invariants involving numeric relationships between values, representation predicates
suitable for our purpose only concern colours and their (non-)separation given by the

35

interpretation of RSD’s. Due to the structure of judgements in our calculi, the predi-
cates we introduce do not yield arbitrary logical formulae but construct or characterise
components of RSD’s.

The first predicate Lst γ Λ constructs an abstract heap containing the spine of a list
rooted at γ. The argument Λ contains a sequence of pairs (δ, ε), where δ specifies an
abstract pointer to the HD-element of a cell and ε represents the abstract pointer to the
successor cell. The predicate is defined by induction on Λ.

Lst γ [] ≡ [γ 7→ (NIL, [])]
Lst γ (δ, ε) :: Λ ≡ Lst ε Λ ∗ [γ 7→ (CONS, [HD 7→ δ,TL 7→ ε])]

The implicit distinctness condition of operator ∗ enforces the colours representing
nodes of the list’s spine (i.e. γ and all the ε’s) to be distinct. The pointers in the δ-
position are unconstrained. In particular, we leave the values held inside these objects
unspecified, as the verifications we consider below do not concern the functional faith-
fulness of representations of high-level data but only structural properties of their lay-
out. In accordance with this, the definition of Lst γ Λ proceeds not by induction on
high-level lists but by induction over lists of (pairs of) colours.

Abstract states applicable at the beginning of Copy’s body are specified by

State γ Λ ≡ ([], [this 7→ γ],Lst γ Λ).

This predicate specifies a state with an empty operand stack, a heap containing the list
specified by Λ and γ, and an abstract store that associates variable this with the initial
cell of the list.

In a similar way as abstract heaps we specify administrative maps. For the verifi-
cations in Sections 5.2 and 5.3, the following construction suffices.

N γ [] ≡ [γ 7→ class(NIL)]
N γ (δ, ε) :: Λ ≡ N ε Λ ∗ [γ 7→ class(CONS)]

Each element in the list’s spine results in one entry in the administrative map. The ter-
minal cell is associated with class NIL, the other cells with class CONS. In Section 5.4
we will introduce a refinement of this construction that also specifies entries for the
δ-positions. Regarding the verifications in Sections 5.2 and 5.3, even the type of the
δ’s may depend on the context program. The existence of dangling abstract pointers in
judgements is permitted, as abstract states in judgements are not required to be closed
(see the first paragraph of Section 3.2).

5.2. Unary verification

Aiming to give an input-output specification of Copy, we define specification quin-
tuples Spec γ Λ δ Υ = (Σ,N,H, δ,M) where

Σ = State γ Λ H = Lst γ Λ ∗ Lst δ Υ
N = N γ Λ M = N γ Λ ∗ N δ Υ.

36

(Here, Υ is again a list of colour pairs.) Specifications are collected in specification
sets Sp n for n ≥ 0 by

Sp n = {Spec γ Λ δ Υ | |Λ| = n ∧ map fst Λ = map fst Υ}.

Sp n contains the specification quintuples for input and result lists with n CONS-nodes,
such that the abstract HD-pointers in the two lists agree at each position. This property
is enforced by the condition map fst Λ = map fst Υ, which also guarantees |Λ| = |Υ|.
By the definition of Spec γ Λ δ Υ – in particular the use of ∗ in the definition of the
components H and M – the spines are laid out distinctly, i.e. the colours in map snd Λ
and map snd Υ are guaranteed not to overlap.

We define the unary specification context UCopy = U0
Copy ∪ U+Copy where

U0
Copy = {(NIL,Copy, 0), S) | S ∈ Sp 0}

U+Copy =
⋃
n>0

{((CONS,Copy, 0), S) | S ∈ Sp n}.

The context associates method NIL.Copy with the specifications for empty lists and the
method CONS.Copy with the specifications for non-empty lists.

In order to show that these specifications are satisfied, we verify ` UCopy. The proof
consists of two cases, one for an entry from U0

Copy and one for an entry from U+Copy. The
former entry concerns NIL.Copy and requires us to prove

UCopy ` (NIL,Copy, 0) : Σ0,N0 ⇓ H0, δ,M0,

where Σ0, . . . ,M0 arise from the definition of Sp 0 as

Σ0 = State γ [] = ([], [this 7→ γ],Lst γ []) = ([], [this 7→ γ], [γ 7→ (NIL, [])])
N0 = N γ [] = [γ 7→ class(NIL)]
H0 = Lst γ [] ∗ Lst δ [] = [γ 7→ (NIL, [])] ∗ [δ 7→ (NIL, [])]
M0 = N γ [] ∗ N δ [] = [γ 7→ class(NIL)] ∗ [δ 7→ class(NIL)].

The verification proceeds by applying the syntax-directed rule sequence UR, UN,
UV as indicated in Figure 26, where we omit the class/method names NIL and
Copy from all labels. The intermediate abstract state Π0 is

Π0 = ([δ], [this 7→ γ],H0).

The side condition δ < dom N0 follows from the inequality γ , δ that is implicit in the
use of ∗ in the definition of H0 and M0.

The verification of an entry from U+Copy requires us to justify

UCopy ` (CONS,Copy, 0) : Σn,Nn ⇓ Hn, δ,Mn

where the components Σn, . . . ,Mn arise from the definition of Sp n, for some n > 0.
We thus have some Λn and Υn of length n, with identical first projection and

Σn = State γ Λn = ([], [this 7→ γ],Kn) Hn = Kn ∗ Lst δ Υn

Nn = N γ Λn Mn = Nn ∗ N δ Υn,

37

UR
UN

δ < dom N0

UCopy ` 0 : Σ0,N0 ⇒ Π0,M0, {1}
UR

UCopy ` 1 : Π0,M0 ⇓ H0, δ,M0

UCopy ` 0 : Σ0,N0 ⇓ H0, δ,M0

Figure 26: Verification of method body NIL.Copy.

UIV
. . . UBSF

UA
((NIL,Copy, 0), (Σ,N ε Λ0,H, ε′,N)) ∈ U0

Copy ⊆ UCopy

UCopy ` (NIL,Copy, 0) : Σ,N ε Λ0 ⇓ H, ε′,N
UCopy ` (NIL,Copy, 0) : ([], [this 7→ ε],K1),N1 ⇓ K, ε′,M

UCopy ` (CONS,Copy, 7) : ([ε],Γ,K1),N1 ⇒ ([ε′],Γ,K),M, {(CONS,Copy, 8)}

Γ = [this 7→ γ, h 7→ ω, t 7→ ε] Σ = ([], [this 7→ ε],Lst ε Λ0)
H = Lst ε Λ0 ∗ Lst ε′ Υ0 N = N ε Λ0 ∗ N ε′ Υ0
K = K1 ∗ Lst ε′ Υ0 M = N1 ∗ N ε′ Υ0

Figure 27: Verification of method body CONS.Copy for k = 0

where Kn abbreviates Lst γ Λn. Writing n = k + 1, there are thus Λk and Υk of length
k ≥ 0, and ω, . . . , ε′, such that Λn = (ω, ε) :: Λk, Υn = (ω′, ε′) :: Υk and

Kn = Lst ε Λk ∗ [γ 7→ (CONS, [HD 7→ ω,TL 7→ ε])]
Nn = N ε Λk ∗ [γ 7→ class(CONS)]
Hn = Kn ∗ Lst ε′ Υk ∗ [δ 7→ (CONS, [HD 7→ ω′,TL 7→ ε′])]
Mn = Nn ∗ N ε′ Υk ∗ [δ 7→ class(CONS)],

where ω = ω′ follows from the identity of the first projections of Λn and Υn, and γ , δ
and ε , ε′ follow from the use of ∗ in the definition of Hn and Mn.

Again, the proof proceeds by traversing the program in forward direction by inter-
leaving UR with the appropriate syntax-directed rules. However, there is a case
distinction due to the recursive call to LIST.Copy at instruction 7. In the case of k = 0
(i.e. the original list was of length one), the receiver object of the invocation is of class
NIL. Consequently, the final hypothesis of rule UIV (i.e. the judgement concern-
ing the invoked method) in this case concerns the body of NIL.Copy. We apply rule
UBSF in order to hide the invoking object [γ 7→ (CONS, [HD 7→ ω,TL 7→ ε])]
and the corresponding entry [γ 7→ class(CONS)] of the administrative map, before
extracting the assumption on NIL.Copy from the proof context using rule UA. The
small-step hypothesis of the application of UR at instruction 7 is thus discharged
by the proof tree in Figure 27. The big-step hypothesis of said application of UR
reads

UCopy ` (CONS,Copy, 8) : ([ε′],Γ,K),M ⇓ H1, δ,M1

and is again discharged in a syntax-directed fashion. The allocation instruction at label
9 introduces the fresh colour δ to M and also an abstract object to K, yielding M1 and
an abstract heap that is subsequently transformed to H1 by instructions 10 to 16, in
particular the field-modifications at labels 13 and 16.

38

NIL Copy1(){[0]new NIL [1]vreturn}
CONS Copy1(){
[0]load this [5]invVirt LIST.Copy1 [10]putf CONS.HD
[1]getf CONS.HD [6]store t [11]dup
[2]store h [7]new CONS [12]load t
[3]load this [8]dup [13]putf CONS.TL
[4]getf CONS.TL [9]load h [14]vreturn
}

Figure 28: List copy example (alternative version)

In the case of k > 0, the receiver object is of class CONS, hence the judgement
extracted from UCopy by the axioms rule stems from U+Copy. Apart from this, the proof
proceeds similar to the first case.

The need to perform this case distinction results from the design decision to en-
force behavioural subtyping locally in the invocation rules. An alternative would be to
introduce a global method specification table and to impose a behavioural subtyping
condition on the entries of this table, as was done in our formalisation of a program
logic for bytecode [30, 31]. The issue how to enforce behavioural subtyping is orthog-
onal to the subject of the present paper.

5.3. Relational verifications
The verification of a relational property follows a similar pattern as that of a unary

property. Using the abstract representation predicates from Section 5.1, we first define
specification tuples, and combine these to specifications that are parametrised by list
lengths. We then introduce a (relational) proof context that associates such specifica-
tions to pairs of program labels. Finally, we prove that the resulting context is verified.

The first relational verification compares the original bytecode from Figure 25 to
the code shown in Figure 28. In the latter code, the variables holding the tail pointer of
the input list and the reference to the newly created CONS object have been eliminated,
with the instructions operating on these variables either having been eliminated as well
or having been replaced by stack operations.

Specification tuples for relational properties are given by RSD pairs. For the first
verification we define tuples

RelSpec1 γ Λ δ Υ = ((Σ,N,Σ), (Π,M,Π))

where Π = ([δ], [],H) and

Σ = State γ Λ N = N γ Λ
H = Lst γ Λ ∗ Lst δ Υ M = N γ Λ ∗ N δ Υ.

Both, the initial RSD (Σ,N,Σ) and the final RSD (Π,M,Π) are symmetric, i.e. contain
identical left and right abstract states.

Specification tuples are combined to specifications RelSp1 n by

RelSp1 n = {RelSpec1 γ Λ δ Υ | |Λ| = n ∧ map fst Λ = map fst Υ}.

39

Finally, we define the specification context G1 = G0
1 ∪G+1 where

G0
1 = {(((NIL,Copy, 0), (NIL,Copy1, 0)), S) | S ∈ RelSp1 0}

G+1 =
⋃
n>0

{(((CONS,Copy, 0), (CONS,Copy1, 0)), S) | S ∈ RelSp1 n}.

The proof of ` G1 proceeds in a similar fashion as the proof of the unary speci-
fication, and is comprised of a part for n = 0 and a part for n > 0. The former part
consists of the rule sequence NN, RR. It thus correlates the allocation events
in the two phrases by employing a single fresh colour jointly in both components. The
latter part applies unary proof rules independently in both phrases (injected by UL
and UR) until the recursive method invocations are reached at the label pair (7, 5). As
in the unary case, we then perform a case distinction on n = 1 in order to separate in-
vocations on receiver objects of class NIL from invocations on objects of class CONS.
Both cases proceed by applying the rule for correlated method invocations, IVIV,
whose final hypothesis is justified by appealing to the axiom rule, guarded by an appli-
cation of the rule F. Having completed the step involving the method invocations,
we proceed by applying the unary rule UI (case S) on both sides, and thus
arrive at the allocation instructions in both phrases (label pair (9, 7)). Again, we corre-
late these instructions using NN. We then apply unary syntax-directed rules until
reaching the end of both method bodies, and finally apply RR.

The fact that the proof correlates the allocations in both proof branches is related
to the symmetry of the RSD (Π,M,Π) in the definition of RelSpec1 γ Λ δ Υ, which
forces both abstract executions to construct the copy using the colours in map snd Υ.
Our second relational verification concerns an alternative specification for the same
program pairs. However, the spines of the copies are now laid out using distinct colours.
To this end, we define the specification entries

RelSpec2 γ Λ υ Υ υ
′ Υ′ = ((Σ,N,Σ), (Π,M,Ξ))

where

Π = ([υ], [],H) Ξ = ([υ′], [],K)
Σ = State γ Λ N = N γ Λ
H = Lst γ Λ ∗ Lst υ Υ K = Lst γ Λ ∗ Lst υ′ Υ′
M = N γ Λ ∗ N υ Υ ∗ N υ′ Υ′.

and combine these to specification sets

RelSp2 n =

RelSpec2 γ Λ υ Υ υ
′ Υ′ |

 |Λ| = n ∧
map fst Λ = map fst Υ ∧
map fst Λ = map fst Υ′


 .

The nodes of the constructed list spines are distinct, due to the use of ∗ in the definition
of M. In contrast, the references to the content nodes agree between the two copies
(and coincide with the references used in the input list), thanks to the second and third
conditions in the definition of RelSp2 n. These conditions also ensure |Υ| = |Υ′| = n.
The initial RSD’s of specifications remain symmetric.

40

NIL Copy2(){[0]new NIL [1]vreturn}
CONS Copy2(){

[0]new CONS
[1]dup
[2]dup

[3]load this
[4]getf CONS.HD
[5]putf CONS.HD

[6]load this
[7]getf CONS.TL
[8]invVirt LIST.Copy2

[9]putf CONS.TL
[10]vreturn

}

Figure 29: List copy example (second alternative)

For context G2 = G0
2 ∪G+2 defined by

G0
2 = {(((NIL,Copy, 0), (NIL,Copy1, 0)), S) | S ∈ RelSp2 0}

G+2 =
⋃
n>0

{(((CONS,Copy, 0), (CONS.Copy1, 0)), S) | S ∈ RelSp2 n}

the proof of ` G2 proceeds similar to the previous proof (in particular, the same case
distinctions are made) but does not correlate the allocation instructions. Instead, each
pair of allocations is verified by two applications of the one-sided rule UI (case
N). Regarding the recursive method invocations, two proofs are possible. The first
proof correlates the invocations using rule IVIV. The final hypothesis of this rule
is discharged by reference to the axiom rule for relational contexts, which is guarded
by an application of F with respect to the invoking objects on both sides. Alterna-
tively, we may apply the unary rule for virtual methods, UIV, once on each side,
in which case we use the result proven in the previous section to discharge the final
hypothesis of UIV in the left program component (using rules UBSF and
UA), and a similar result for method Copy1 to discharge the same hypothesis in the
right program component.

Specifications using decoupled lists as in G2 are also useful for verifying the equiv-
alence of Copy to the variation shown in Figure 29. Here, the object allocation is moved
to the front of the method, preceding the recursive method invocation. The appropriate
context G3 = G0

3 ∪G+3 where

G0
3 = {(((NIL,Copy, 0), (NIL,Copy2, 0)), S) | S ∈ RelSp2 0}

G+3 =
⋃
n>0

{(((CONS,Copy, 0), (CONS,Copy2, 0)), S) | S ∈ RelSp2 n}.

arises from G2 by replacing Copy1 by Copy2. Using the rules given in Section 4, one
may indeed show ` G3. As in the previous proof we use the uncorrelated allocation
rule UI (case N), and may validate the invocations either using UIV twice
(once on each side) or correlate them using IVIV. In contrast, an attempt to prove
the equivalence between Copy and Copy2 for a context in the style of G1 fails. As
the order of the events allocation and method invocation do not agree between the two
programs, neither rule NN nor rule IVIV may be invoked. In this sense, our
calculus is less flexible than Necula’s symbolic execution [20], as we require correlated
events in the two executions to occur in the same relative order.

The proof attempts for the relation between Copy and Copy2 might suggest that
relational contexts with correlated object colours are not very useful, as they appear

41

less expressible and less flexible than contexts with uncorrelated object colours. Our
final verification falsifies this suspicion.

5.4. Non-interference for alternating lists

The final verification concerns the non-interference of Copy, for lists which con-
tain content elements of different visibility. The specification requires that the result
list obeys the same visibility policy as the input list. We limit our attention to a policy
where the visibility alternates between high and low. This regularity may easily be
expressed using refined definitions of the abstract representation predicates. We ex-
pect that alternative patterns could be verified in a similar manner using appropriately
modified abstract representation predicates.

Specifications comprise non-symmetric initial and final RSD’s, such that each ini-
tial RSD models a list with content elements of alternating visibility and each final
RSD models two such lists whose alternation patterns agree and coincide with that of
the input list. The specification of the abstract heaps employs the previously defined
predicate Lst γ Λ. In order to model the (non-)distinctness of colours representing list
cells and content elements, however, we refine the construction N γ Λ of administrative
maps to the predicates NL and NH. Both predicates are relations over nine-tuples

T × C × L × L × (C ⇀fin T) × C × L × L × (C ⇀fin T)

where L abbreviates (C × C) list, and specify jointly the initial and final administra-
tive maps of relational judgements. Intuitively, (tp, γ,Λ,Λ′,N, δ,Υ,Υ′,M) ∈ NL and
(tp, γ,Λ,Λ′,N, δ,Υ,Υ′,M) ∈ NH both mean that N is an initial administrative map
containing the colours used by the lists specified by γ, Λ, and Λ′, whereas M is the
corresponding terminal administrative map and contains additionally the colours from
the lists specified by δ, Υ, and Υ′. In contrast to the maps constructed by N γ Λ,
maps N and M here contain not only entries for the lists’ spines but also for the colours
representing the content elements. The inclusion of the latter colours (which are as-
sociated with the type tp) enables us to model the visibility of content elements using
(non)disjointness conditions.

Both predicates construct the initial and final administrative maps of a judgement
w.r.t. a particular list length. The predicate NL constructs the maps for public lists,
by which we mean a list whose first content element is public, and whose tail is a
private list. NH constructs the maps for private list, by which we mean a list whose
first content element is private, and whose tail is a public list. In both cases, the spines
contain correlated colours and are of equal length. The (non)distinctness conditions
expressed in the definition of the predicates enforce (non)-separation properties of the
lists constructed by the predicate Lst γ Λ. Figure 30 depicts a heaps of an RSD
φ = (Σ,N,Σ′) that models a public list of length five. Solid arrows depict references
in Σ, dotted arrows references in Σ′. The predicates are defined in a mutually recursive
fashion by the four rules shown in Figure 31 and are motivated as follows. Both,
private and public lists may be empty (rules NH-N and NL-N), in which case the
initial map N only contains a single element for the NIL cell, and the final map M
contains an additional element for the freshly allocated copy. Similar to the definition

42

γ3

HD TL

CONS

HD TL

CONS

HD TL

CONS

HD TL

CONS

NIL

γ4’

HD TL

CONS

γ4 γ5

δ32δ δ4
5δ

2
γ

δ1

’
2

γγ1

ω

Figure 30: A public list of length five

NH-N
N = [ω 7→ class(NIL)] M = N ∗ [α 7→ class(NIL)]

(tp, ω, [], [],N, α, [], [],M) ∈ NH

NH-C

(tp, δ,Λ,Λ′,N, ε,Ω,Ω′,M) ∈ NL
N′ = N ∗ [ω 7→ class(CONS)] ∗ [γ 7→ tp] ∗ [γ′ 7→ tp]

M′ = M ∗ [ω 7→ class(CONS)] ∗ [γ 7→ tp]
∗ [γ′ 7→ tp] ∗ [α 7→ class(CONS)]

(tp, ω, (γ, δ) :: Λ, (γ′, δ) :: Λ′,N′, α, (γ, ε) :: Ω, (γ′, ε) :: Ω′,M′) ∈ NH

NL-N
N = [ω 7→ class(NIL)] M = N ∗ [α 7→ class(NIL)]

(tp, ω, [], [],N, α, [], [],M) ∈ NL

NL-C

(tp, δ,Λ,Λ′,N, ε,Ω,Ω′,M) ∈ NH
N′ = N ∗ [ω 7→ class(CONS)] ∗ [γ 7→ tp]

M′ = M ∗ [ω 7→ class(CONS)] ∗ [γ 7→ tp] ∗ [α 7→ class(CONS)]
(tp, ω, (γ, δ) :: Λ, (γ, δ) :: Λ′,N′, α, (γ, ε) :: Ω, (γ, ε) :: Ω′,M′) ∈ NL

Figure 31: Definition of predicates NL and NH

43

HD TL

CONS
ω

HD TL

CONS
δ1

HD TL

CONS2δ

HD TL

CONS
δ3

HD TL

CONS
δ4

NIL
5δ

HD TL

CONSα
HD TL

CONSε1

HD TL

CONSε2

HD TL

CONSε3

HD TL

CONSε4

NIL
ε5

γ1 2
γ ’

2
γ

γ3 γ4 γ4’ γ5

Figure 32: Copying the list from Figure 30

of earlier predicates, the use of ∗ enforces the distinctness of the colours α and ω.
An administrative map N′ for a non-empty private list (rule NH-C) contains the
colours N of the public list with the joint head element δ and the tails Λ and Λ′, where
δ occurs in the head elements of both list descriptions of the rule’s conclusion. The
fact that δ is shared ensures that the spines of the two lists are correlated. The colour
representing the head pointer of the newly constructed list, ω, is separatingly conjoined
to N, ensuring that the lists are acyclic. The abstract pointers to the content elements, γ
and γ′, are also added to the administrative map, with their type specified by tp. Again,
by the implicit distinctness condition of ∗, γ and γ′ are distinct colours (i.e. the pointers
to the content elements are not correlated), and are disjoint from ω and the colours in
N. The latter condition means in particular that all content elements are coloured using
distinct colours. The final map M′ is constructed similarly by (separatingly) extending
M by entries for ω, γ, and γ′, and additionally by an entry for α, the colour representing
the newly allocated object.

Administrative maps of non-empty public lists are constructed similarly (rule NL-
C), modelling a private list specified by δ and the tails Λ and Λ′, plus entries for
the head cells ω and α, and the abstract content pointer γ. In contrast to rule NH-C,
the content pointer is now required to be correlated: γ occurs in the first components
of both abstract list descriptions. This models the fact that the head elements of public
lists are indistinguishable.

We define non-interference specifications NISpec tp γ Λ Λ′ υ Υ Υ′ as the set of
RSD pairs ((Σ,N,Σ′), (Π,M,Π′)) such that

Σ = State γ Λ Σ′ = State γ Λ′

H = Lst γ Λ ∗ Lst υ Υ H′ = Lst γ Λ′ ∗ Lst υ Υ′

and (tp, γ,Λ,Λ′,N, υ,Υ,Υ′,M) ∈ NH or (tp, γ,Λ,Λ′,N, υ,Υ,Υ′,M) ∈ NL, where
Π = ([υ], [],H) and Π′ = ([υ], [],H′). Figure 32 shows the result of copying the
list from Figure 30, i.e. an RSD that contains two copies of the list. The spine has been
duplicated using colours α, ε1, . . . , ε5, but the links to the content elements are shared.

44

We define specification sets

NISptp n =
⋃
|Λ|=n

NISpec tp γ Λ Λ′ υ Υ Υ′

and the context Gtp = G0
tp ∪G+tp where

G0
tp = {(((NIL,Copy, 0), (NIL,Copy, 0)), S) | S ∈ NISptp 0}

G+tp =
⋃
n>0

{(((CONS,Copy, 0), (CONS,Copy, 0)), S) | S ∈ NISptp n}.

The definition of the predicates NL and NH guarantees the required (non)-separation
of colours in Λ, Λ′, Υ and Υ′. Hence, no explicit conditions to this effect occur in the
definition of NISptp n.

The proof of ` Gtp proceeds in a similar style as the relational verifications in the
previous section. Both, the proof for n = 0 and the proof for n > 0 proceed largely
syntax-directed and correlate the allocation instructions using rule NN. The re-
cursive invocations of Copy in the proof for n > 0 are treated using the rule for corre-
lated invocations, IVIV, guarded by an application of the frame rule, with a case
distinction regarding n = 1.

The present section has demonstrated that RSD’s together with inductively defined
predicates yield an expressive specification formalism for heap-allocated data struc-
tures. Despite this flexibility, the verification proofs were only of moderate complexity,
thanks to a combination of the frame rules and polyvariance.

6. Discussion

We discuss further related work, outline future work, and finally conclude.

6.1. Related work
In addition to the work already mentioned numerous analyses have been devel-

oped for non-interference and related notions. Sabelfeld and Myers’ survey article [1]
provides a comprehensive overview, concentrating mostly on high-level languages.

The use of the program dependence graph (PDG), respectively of def-use-chains,
for the analysis of information flow has been advocated by Hammer et al. [19] and
Bian et al. [32]. In particular, the combination of the PDG with a path analysis pre-
sented in [19] is reported to yield a more precise analysis than existing type systems.
On the other hand, it is unclear how to formalise a semantic interpretation of the PDG
in an efficient way, given the non-local nature of the PDG structure. Nevertheless, an
extension of flow sensitivity towards path sensitivity would be an interesting avenue
for future work. An analysis of non-interference of bytecode programs using a rep-
resentation of program dependencies in terms of abstract transfer functions has been
presented by [33]. Abadi et al.’s Core Calculus of Dependencies (CCD,[34]) formally

45

unifies various notions of program dependencies, including Volpano et al.’s calculus
and the SLam calculus [35], in an extension of Moggi’s computational λ-calculus. As
our approach does not explicitly track dependencies we do not see a direct way to relate
it to CCD.

Self-composition [4] provides an alternative to type-based verification, avoiding re-
lational calculi. Similar approaches have been advocated by Darvas et al. [3] and Joshi
and Leino [2]. Terauchi and Aiken [5] demonstrate that integrating self-composition
with program transformations leads to a verification approach that is more amenable to
automated verification than the original system of [4]. A PCC implementation of self-
composition would require trusted implementations of a verification condition genera-
tor and a verification condition checker, and evidence that the transformation convert-
ing a specific program into its self-composed form is applied correctly. In [36], the
idea behind self-composition is recast in terms of a non-relational program logic, elim-
inating the need for the syntactic code transformation. It is then shown how the type
system of Volpano et al., as well as that of Hunt and Sands [25] can be encoded as de-
rived lemmas over restricted assertion formats. Hähnle et al. [37] present an encoding
of the type system of Hunt and Sands in dynamic logics.

The use of relational techniques for studying information flow was pioneered by
Sabelfeld in [38]. Naumann [39] proposed a combination of Benton’s relational Hoare
logic with information flow analysis by self-composition. In order to model self-
composition for objects an encoding in ghost fields is proposed. Ghost fields are also
employed in Warnier’s specification of termination-sensitive non-interference in JML
[40], and in work by Schubert and Chrzaszcz on the verification of a range of security
properties using ESC/Java [41].

Pottier and Simonet [42] embed a higher-order functional language into a language
of program pairs. Non-interference is obtained as a special case of a subject reduction
theorem for a type system over this extended language.

Zanardini [43] outlined a variation of abstract non-interference for bytecode which
shows some similarities to our approach, at the level of basic blocks. Little details are
given about the treatment of objects and (non-)aliasing, and abstractions appear not to
contain any formal conditions linking initial to final states.

An integrated treatment of security and transformations may also be of use for
policies that fail to be semantics-respecting. Indeed transformations that are routinely
(and silently) applied in compilers may destroy (or falsely establish) the satisfaction
of such policies. In connection with this, and building upon earlier work by Agat [44]
and Sabelfeld-Sands [45], Köpf and Mantel [46] present a framework for transform-
ing programs that are sequentially secure, but have timing leaks, into observationally
equivalent (hence again sequentially secure) programs without timing leaks. Treat-
ing a high-level imperative language extended by concurrency primitives, they apply
a unification-based approach in which branches of high conditionals are padded by
additional instructions. This framework may be seen as a technique also to eliminate
sequentially insecure programs, as these cannot be transformed at all. The approach
covers some cases of high branches, like if h1 then h2:=e1; l:=e2 else l:=e2 where e2 is
a low expression. However, motivated by the concurrent setting, a stronger notion of
security is employed which does not permit the reordering of low assignments to dif-
ferent variables. In contrast, our end-to-end interpretation admits such reorderings, and

46

some corresponding transformations are indeed derivable from the rules given. Sim-
ilar comments apply to the bisimulation-based approaches of [47, 45]. Again, these
approaches concern the traces of events (where events include variable and field as-
signments) and retain the static distinction between public and private variables. On
the other hand, the dichotomy of correlated and uncorrelated events indeed resembles
weak bisimulation.

Formal proofs of code transformations on a per-program-basis are the subject of
credible compilation [48] and translation validation [49, 20, 22, 50]. Rhodium [51]
targets the formal justification of general optimisation algorithms. Using a domain-
specific language, Rhodium separates the specification of transformation-enabling pro-
gram analyses from the formulation and application of the transformations themselves.
A type-based approach to the soundness of optimising bytecode transformations has
been presented in [52]. The same authors recently presented an elegant proof of cor-
rectness of partial redundancy elimination [53].

6.2. Future work

We intend to extend our approach to a language fragment with exceptions and ar-
rays. We expect that the transfer of control flow depending on the success of handling
an exception should not be too difficult to deal with. Indeed, exceptions resemble
conditionals in the setting of unstructured code. The inclusion of exceptions will then
enable a more faithful treatment of object-related instructions that includes null-pointer
cases. For this, the interpretation of abstract states will need to be adapted as object
colours may not necessarily represent non-null locations.

As the relations between integer values abstracted to the same colour remain in-
variant throughout a judgement, large parts of our proof system are independent of the
notion of indistinguishability. This motivates a generalisation to arbitrary relations over
values, which might allow us to embed Banerjee et al.’s formulation of declassification
policies [29] or Giacobazzi and Mastroeni’s abstract non-interference [54]. Extend-
ing such a generalisation to object colours would enable one to express that the two
references interpreting a colour in two states are either jointly null or jointly non-null.

An aspect of Amtoft et al.’s work that we have not discussed yet concerns the
abstract locations that represent sets of concrete locations and are the basis of reasoning
about separation in [14]. In our current work, abstract locations only represent single
locations. Future work might generalise this discipline to groups of possibly aliasing
locations, for example by using regions [55].

Following our intuitive introduction in Section 1, we point out that RSD’s with
empty abstract operand stacks are applicable to J. A formulation of an RSD-based
proof system at this language level would be a natural formalism for studying non-local
program transformations. Subsequently, one might aim to develop a proof system for
certified translation given by relational proof rules where the two program phrases stem
from different languages.

Short of moving to a program logic altogether, more expressive variations of our
technology might be obtained by equipping administrative maps either by a system of
symbolic arithmetic expressions over colours or by a general relation over its domain.

47

Indeed, the formulation of relationships between (the values interpreting) colours ap-
pears necessary for the verification of complex program transformations such as partial
redundancy elimination.

The present article considered a partial-correctness interpretation and termination-
insensitive non-interference. A significant subset of the rules however appear also
suitable for a termination-sensitive notion, or at least adaptable. The feature sepa-
rating these two notions is co-termination, i.e. the property that two executions show
equal termination behaviour. In order to satisfy this condition, all rules should ensure
progress of their subject phrases. In the case of putfield and virtual method invoca-
tion, this requires the inclusion of the side condition D ≤ C: without this, our oper-
ational semantics gets stuck. Furthermore, we expect that rule UL would have to
be equipped with a termination guarantee for the phrase at `, in order to promote co-
termination from (`1, `

′) to (`, `′). In accordance with rule UL, we envision a notion
of co-termination that permits the two executions to take a differing number of basic
instruction steps, and be formulated in big-step fashion. Finally, an initial exploration
of these ideas suggests that co-termination is also beneficial for obtaining a horizontal
composition rule

∅ ` ` ∼ `′ : (Σ,N,Σ′)→ (Π,M,Π′) ∅ ` `′ ∼ `′′ : (Σ′,N,Σ′′)→ (Π′,M,Π′′)
∅ ` ` ∼ `′′ : (Σ,N,Σ′′)→ (Π,M,Π′′)

which composes transformations steps sequentially.
Soundness of the proof system being the focus of this article, we have not dis-

cussed proof inference or decidability. These are topics for future research, in partic-
ular in combination with translation validation and the algorithms included in some
of the above-mentioned publications on that topic. Müller-Olm et al. [56] propose
improved techniques for identifying polynomial identities between program variables,
and Gulwani and Necula present an randomised analysis for affine equalities [57]. Both
lines of work concern the values of program variables in a single program execution,
whereas we require an analysis regarding the equivalence of values across two execu-
tions. One way to exploit their ideas may be to apply them to self-composed programs.
Alternatively, an investigation of the relationship with static analyses techniques for
copy propagation may be worth pursuing. Regarding the univariant case, dynamic pro-
gramming techniques may be of use for deciding the syntax-directed fragment (i.e. the
system without the renaming and frame rules) if one tabulates the specifications for all
elements of the cross-product of program labels.

6.3. Conclusion

We presented technology for the certification of correlations of unstructured byte-
code, based on relational state descriptions and unary and relational proof systems.
Instead of tracking formal dependencies, our approach tracks the flow of correlated
values through program executions. We avoid the calculation of control dependence
regions and lift previous restrictions on the occurrence of assignments, allocations,
field access and method invocations in branches. Our system incorporates instances of

48

copy propagation, supports heap-local reasoning by frame rules, and admits the speci-
fication and verification of complex non-interference properties for heap-allocated data
structures.

Acknowledgements

This work was supported by the Information Society Technologies programme of the European Com-
mission, Future and Emerging Technologies under the IST-2005-015905 MOBIUS project, and the DFG
project InfoZert, grant number Be 3712/2-1. We are grateful to the members of both projects for discussions
on type systems and program logics for information flow. We would also like to thank the reviewers for
their insightful comments and suggestions, and the editors for organising the workshop and overseeing the
publication process.

References

[1] A. Sabelfeld, A. C. Myers, Language-based information-flow security, IEEE
Journal on Selected Areas in Communications 21 (1) (2003) 5 – 19, special issue
on Formal Methods for Security.

[2] R. Joshi, K. R. M. Leino, A semantic approach to secure information flow, Sci-
ence of Computer Programming 37 (2000) 113 – 138.

[3] Á. Darvas, R. Hähnle, D. Sands, A theorem proving approach to analysis of se-
cure information flow, in: D. Hutter, M. Ullmann (Eds.), Proc. 2nd International
Conference on Security in Pervasive Computing (SPC’05), Vol. 3450 of LNCS,
Springer, 2005, pp. 193–209.

[4] G. Barthe, P. R. D’Argenio, T. Rezk, Secure information flow by self-
composition, in: Proceedings of the 17th IEEE Computer Security Foundations
Workshop (CSFW’04), IEEE Computer Society Press, 2004, pp. 100–114.

[5] T. Terauchi, A. Aiken, Secure information flow as a safety problem, in: C. Han-
kin, I. Siveroni (Eds.), Proceedings of the 12th International Symposium on Static
Analysis (SAS ’05), Vol. 3672 of LNCS, Springer, 2005, pp. 352–367.

[6] G. Barthe, D. Pichardie, T. Rezk, A Certified Lightweight Non-Interference Java
Bytecode Verifier, in: R. D. Nicola (Ed.), Proceedings of 16th European Sym-
posium on Programming (ESOP’07), Vol. 4421 of LNCS, Springer, 2007, pp.
125–140.

[7] R. Medel, A. B. Compagnoni, E. Bonelli, A typed assembly language for non-
interference, in: M. Coppo, E. Lodi, G. M. Pinna (Eds.), Proceedings of the 9th
Italian Conference on Theoretical Computer Science (ICTCS 2005), Vol. 3701 of
LNCS, Springer, 2005, pp. 360–374.

49

[8] N. Kobayashi, K. Shirane, Type-based information analysis for low-level lan-
guages, in: Proceedings of the Third Asian Workshop on Programming Lan-
guages and Systems, (APLAS’02), 2002, pp. 302–316.

[9] G. C. Necula, Proof-carrying code, in: P. Lee, F. Henglein, N. D. Jones (Eds.),
Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 1997), ACM Press, 1997, pp. 106–119.

[10] T. Nipkow, L. C. Paulson, M. Wenzel, Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, Vol. 2283 of LNCS, Springer, 2002.

[11] L. Beringer, Relational bytecode correlations - Isabelle/HOL sources, available
from the author’s homepage, 2009.

[12] J. C. Reynolds, Separation logic: A logic for shared mutable data structures, in:
Proceedings of the 17th IEEE Symposium on Logic in Computer Science (LICS
2002), IEEE Computer Society, 2002, pp. 55–74.

[13] N. Benton, Simple relational correctness proofs for static analyses and program
transformations, in: Jones and Leroy [58], pp. 14–25.

[14] T. Amtoft, S. Bandhakavi, A. Banerjee, A logic for information flow in object-
oriented programs, in: Morrisett and Peyton Jones [59], pp. 91–102.

[15] H. Yang, Relational separation logic, Theoretical Computer Science 375 (1-3)
(2007) 308–334.

[16] L. Beringer, M. Hofmann, A. Momigliano, O. Shkaravska, Automatic certifica-
tion of heap consumption, in: F. Baader, A. Voronkov (Eds.), Logic for Pro-
gramming, Artificial Intelligence, and Reasoning, 11th International Conference,
LPAR 2004, Proceedings, Vol. 3452 of LNCS, Springer, 2004, pp. 347–362.

[17] A. W. Appel, Foundational proof-carrying code, in: Proceedings of the 16th An-
nual IEEE Symposium on Logic in Computer Science (LICS 2001), IEEE Com-
puter Society, 2001, pp. 247–258.

[18] D. Volpano, G. Smith, C. Irvine, A sound type system for secure flow analysis,
Journal of Computer Security 4 (3) (1996) 167–187.

[19] C. Hammer, J. Krinke, G. Snelting, Information flow control for Java based on
path conditions in dependence graphs, in: Proceedings of the IEEE International
Symposium on Secure Software Engineering (ISSSE 2006), 2006, pp. 87–96.

[20] G. C. Necula, Translation validation for an optimizing compiler, in: Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’00), Vol. 35(5) of SIGPLAN Notices, ACM, 2000, pp.
83–94.

[21] X. Leroy, Formal certification of a compiler back-end or: programming a com-
piler with a proof assistant, in: Morrisett and Peyton Jones [59], pp. 42–54.

50

[22] J.-B. Tristan, X. Leroy, Formal verification of translation validators: a case study
on instruction scheduling optimizations, in: G. C. Necula, P. Wadler (Eds.), Pro-
ceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, (POPL 2008), ACM Press, 2008, pp. 17–27.

[23] A. Banerjee, D. A. Naumann, Stack-based access control and secure information
flow, J. Funct. Program. 15 (2) (2005) 131–177.

[24] L. Birkedal, H. Yang, Relational parametricity and separation logic, in: H. Seidl
(Ed.), Proceedings of the 10 International Conference on Foundations of Software
Science and Computational Structures (FOSSACS 2007), Vol. 4423 of LNCS,
Springer, 2007, pp. 93–107.

[25] S. Hunt, D. Sands, On flow-sensitive security types, in: Morrisett and Peyton
Jones [59], pp. 79–90.

[26] T. Kleymann, Hoare Logic and VDM: Machine-Checked Soundness and Com-
pleteness Proofs, Ph.D. thesis, LFCS, University of Edinburgh, technical Report
ECS-LFCS-98-392 (Sep. 1998).

[27] T. Nipkow, Hoare logics for recursive procedures and unbounded nondetermin-
ism, in: J. C. Bradfield (Ed.), Computer Science Logic, 16th International Work-
shop, CSL 2002, 11th Annual Conference of the EACSL, Proceedings, Vol. 2471
of LNCS, Springer, 2002, pp. 103–119.

[28] L. Beringer, M. Hofmann, A bytecode logic for JML and types, in: N. Kobayashi
(Ed.), Proceedings of the 4th Asian Symposium on Programming Languages and
Systems (APLAS’06), Vol. 4279 of LNCS, Springer, 2006, pp. 389 – 405.

[29] A. Banerjee, D. A. Naumann, S. Rosenberg, Towards a logical account of declas-
sification, in: Proceedings of the 2007 ACM Workshop on Programming Lan-
guages and Analysis for Security (PLAS’07), ACM Press, 2007, pp. 61–65.

[30] Mobius-Consortium, Deliverable 3.1: Bytecode level specification language and
program logic, available from http://mobius.inria.fr (2006).

[31] L. Beringer, M. Hofmann, M. Pavlova, Certification using the Mobius Base
Logic, in: F. S. de Boer, M. M. Bonsangue, S. Graf, W. P. de Roever (Eds.), For-
mal Methods for Components and Objects, 6th International Symposium, (FMCO
2007), Revised Lectures, Vol. 5382 of LNCS, Springer, 2008, pp. 25–51.

[32] G. Bian, K. Nakayama, Y. Kobayashi, M. Maekawa, Java bytecode dependence
analysis for secure information flow, International Journal of Network Security
4 (1) (2007) 59–68.

[33] S. Genaim, F. Spoto, Information Flow Analysis for Java Bytecode, in: R. Cousot
(Ed.), Proceedings of the Sixth International Conference on Verification, Model
Checking, and Abstract Interpretation, (VMCAI 2005), Vol. 3385 of LNCS,
Springer, 2005, pp. 346–362.

51

[34] M. Abadi, A. Banerjee, N. Heintze, J. G. Riecke, A core calculus of dependency,
in: A. W. Appel, A. Aiken (Eds.), Proceedings of the 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 1999),
ACM Press, 1999, pp. 147–160.

[35] N. Heintze, J. G. Riecke, The SLam calculus: programming with secrecy and
integrity, in: Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 1998), ACM Press, 1998, pp. 365–
377.

[36] L. Beringer, M. Hofmann, Secure information flow and program logics, in: Pro-
ceedings of the 20th IEEE Computer Security Foundations Symposium (CSF’07),
IEEE, 2007, pp. 233–245.

[37] R. Hähnle, J. Pan, P. Rümmer, D. Walter, Integration of a security type system
into a program logic, in: U. Montanari, D. Sannella, R. Bruni (Eds.), Trustworthy
Global Computing, Second Symposium, TGC 2006, Revised Selected Papers,
Vol. 4661 of LNCS, Springer, 2007, pp. 116–131.

[38] A. Sabelfeld, Semantic models for the security of sequential and concurrent
programs, Ph.D. thesis, Chalmers University of Technology and University of
Gothenburg (May 2001).

[39] D. Naumann, From coupling relations to mated invariants for checking informa-
tion flow (extended abstract), in: D. Gollmann, J. Meier, A. Sabelfeld (Eds.),
Proceedings of the 11th European Symposium on Research in Computer Security
(ESORICS 2006), Vol. 4189 of LNCS, Springer, 2006, pp. 279–296.

[40] M. Warnier, Language Based Security for Java and JML, Ph.D. thesis, Radboud
University, Nijmegen, The Netherlands (2006).

[41] A. Schubert, J. Chrzaszcz, ESC/Java2 as a tool to ensure security in the source
code of Java applications, in: Proceedings of Conference on Software Engineer-
ing Techniques - SET’2006, Vol. 227 of IFIP International Federation for Infor-
mation Processing, Springer, 2006, pp. 337–348.

[42] F. Pottier, V. Simonet, Information flow inference for ML, in: J. Launchbury, J. C.
Mitchell (Eds.), Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL 2002), ACM Press, 2002, pp.
319–330.

[43] D. Zanardini, Abstract Non-Interference in a fragment of Java bytecode, in: Pro-
ceedings of the ACM Symposium on Applied Computing (SAC), ACM Press,
2006, pp. 1822–1826.

[44] J. Agat, Transforming out timing leaks, in: M. Wegman, T. Reps (Eds.), Proceed-
ings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL 2000), ACM Press, 2000, pp. 40–53.

52

[45] A. Sabelfeld, D. Sands, Probabilistic noninterference for multi-threaded pro-
grams, in: Proceedings of the 13th IEEE Computer Security Foundations Work-
shop (CSFW’00), IEEE, 2000, pp. 200–214.

[46] B. Köpf, H. Mantel, Eliminating implicit information leaks by transformational
typing and unification, in: T. Dimitrakos, F. Martinelli, P. Y. A. Ryan, S. A.
Schneider (Eds.), Formal Aspects in Security and Trust, Third International
Workshop (FAST 2005), Revised Selected Papers, Vol. 3866 of LNCS, Springer,
2006, pp. 47–62.

[47] A. Bossi, C. Piazza, S. Rossi, Unwinding conditions for security in imperative
languages, in: S. Etalle (Ed.), Revised Selected Papers of the 14th International
Symposium on Logic Based Program Synthesis and Transformation (LOPSTR
2004), Vol. 3573 of LNCS, Springer, 2004, pp. 85–100.

[48] M. Rinard, D. Marinov, Credible compilation with pointers, in: Proceedings of
the FLoC Workshop on Run-Time Result Verification, 1999.

[49] A. Pnueli, M. Siegel, E. Singerman, Translation validation, in: B. Steffen
(Ed.), Proceedings of the 4th International Conference on Tools and Algorithms
for Construction and Analysis of Systems (TACAS ’98), Vol. 1384 of LNCS,
Springer, 1998, pp. 151–166.

[50] A. Zaks, A. Pnueli, Covac: Compiler validation by program analysis of the cross-
product, in: J. Cuéllar, T. S. E. Maibaum, K. Sere (Eds.), Proceedings of the 15th
International Symposium on Formal Methods (FM2008), Vol. 5014 of LNCS,
Springer, 2008, pp. 35–51.

[51] S. Lerner, T. D. Millstein, E. Rice, C. Chambers, Automated soundness proofs for
dataflow analyses and transformations via local rules, in: J. Palsberg, M. Abadi
(Eds.), Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL 2005), ACM Press, 2005, pp. 364–377.

[52] A. Saabas, T. Uustalu, Type systems for optimizing stack-based code, in:
M. Huisman, F. Spoto (Eds.), Proceedings of the 2nd Workshop on Bytecode Se-
mantics, Verification, Analysis and Transformation (Bytecode 2007), Vol. 190(1)
of ENTCS, Elsevier Science, 2007, pp. 103–119.

[53] A. Saabas, T. Uustalu, Proof optimization for partial redundancy elimination, in:
R. Glück, O. de Moor (Eds.), Proceedings of the 2008 ACM SIGPLAN Sympo-
sium on Partial Evaluation and Semantics-based Program Manipulation (PEPM
2008), ACM, 2008, pp. 91–101.

[54] R. Giacobazzi, I. Mastroeni, Abstract non-interference: parameterizing non-
interference by abstract interpretation, in: Jones and Leroy [58], pp. 186–197.

[55] J. M. Lucassen, D. K. Gifford, Polymorphic effect systems, in: Proceedings of
the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, (POPL 1988), ACM Press, 1988, pp. 47–57.

53

[56] M. Müller-Olm, M. Petter, H. Seidl, Interprocedurally analyzing polynomial
identities, in: Proceedings of the 23rd Annual Symposium on Theoretical As-
pects of Computer Science (STACS), Vol. 3884 of LNCS, Springer, 2006, pp.
50–67.

[57] S. Gulwani, G. C. Necula, Discovering affine equalities using random interpreta-
tion, in: Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL 2003), ACM Press, 2003, pp. 74–84.

[58] N. D. Jones, X. Leroy (Eds.), Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2004), ACM Press,
2004.

[59] J. G. Morrisett, S. L. Peyton Jones (Eds.), Proceedings of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL 2006), ACM Press, 2006.

54

