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Abstract. We introduce relational decomposition, a technique for formally re-
ducing termination-insensitive relational program logics to unary logics, that is
program logics for one-execution properties. Generalizing the approach of self-
composition, we develop a notion of interpolants that decompose along the phrase
structure, and relate these interpolants to unary and relational predicate trans-
formers. In contrast to previous formalisms, relational decomposition is applica-
ble across heterogeneous pairs of transition systems. We apply our approach to
justify variants of Benton’s Relational Hoare Logic (RHL) for a language with
objects, and present novel rules for relating loops that fail to proceed in lockstep.
We also outline applications to noninterference and separation logic.

1 Introduction

Verification formalisms and tools based on Hoare logics are typically designed with
one-execution properties in mind: their partial or total correctness interpretation in-
volves a single operational judgement s P−→ t.
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Fig. 1. Relational de-
composition of simu-
lation using witness φ

However, many program properties are relational: they are
naturally phrased as statements over pairs of executions s P−→ t

and s′
P ′−→ t′, stipulating that the terminal states are in re-

lation S whenever the initial states are in relation R. Exam-
ples include “obviously relational” properties such as program
transformations or noninterference [35], but also extensional
interpretations of type systems and program analyses [13].

In this article, we present relational decomposition, a tech-
nique for reducing the verification of relational properties to
that of unary ones. We demonstrate our technique by deriving
a variant of Benton’s Relational Hoare Logic (RHL, [13]) from
a unary program logic, demonstrating that efforts invested into
the construction of semantic models for unary logics can be
harnessed for the justification of relational formalisms. We
thus open an avenue for integrating relational logics into foundational stacks of veri-
fication formalisms [6, 4].
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Relational decomposition reduces the validation of a simulation to the separate ver-

ification of unary specifications for the executions s P−→ t and s′ P ′−→ t′. These unary
specifications are determined by shared relations φ that relate terminal states of (non-
primed) executions to the left with initial states of (primed) executions to the right, in
effect witnessing the simulation as indicated in Figure 1. The specification for P then
arises from the upper left decomposition triangle (with corners s, s′, and t), and the
specification for P ′ arises from the lower right triangle (with corners s′, t′, and t). Each
unary specification universally quantifies over states from the opposite execution.

The present article makes two contributions. First, we present fundamental prop-
erties of relational decomposition, in a setting in which the two transition systems in-
volved in a simulation are not necessarily identical. We exploit this flexibility when
extending relational decomposition to parametrized simulations, i.e. situations where
the relations R and S are parametric over values of some type Z . Second, we present
specific relational decompositions of relational program logics, for a concrete language
of commands, objects, and loops, thus demonstrating how witness relations may be
obtained in a concrete setting. More specifically, we

1. establish soundness of decomposition: any witness φ yields unary specifications for
the left and right executions that together imply the simulation property (Section 2);

2. establish the formal completeness of decomposition: witnesses exist whenever the
simulation property semantically holds. The space of witnesses is characterized by
an inclusion property between relational predicate transformers. We present laws
that relate these transformers to their unary counterparts (Section 2);

3. derive a termination-insensitive variant of RHL in decomposed style, including
novel rules for dissonant loops, i.e. loops that do not proceed in lock-step; in par-
ticular, proof rules synthesize witnesses in a compositional fashion (Section 3);

4. outline an extension of relational decomposition that deals with parametrized sim-
ulations. The resulting logic can be used to justify type systems for noninterfer-
ence [7] and variants of relational separation logics [40] (Section 4).

All results have been verified using the theorem prover Isabelle/HOL, and the source
files are available online [14]. As a consequence, details of most proofs are omitted.

1.1 Related work

Relational decomposition extends the idea of self-composition [11]. For the special case
of (termination-insensitive) noninterference [35], self-composition establishes the se-
curity of a command1 C by verifying the one-execution property {∼L} C;C ′{∼L}
where C ′ arises from C by replacing all program variables x in C by fresh copies x′,
and the predicate ∼L is defined as {s | ∀x ∈ L. s x = s x′} for some fixed (“low”)
subset L of (nonprimed) variables. Self-composition thus reduces relational to unary
verification using syntactic operations on programs: variable renaming, code duplica-
tion, and (sequential) composition. Relational decomposition reveals that the essence

1 Anticipating the concrete programming language used later in the paper, we let C range over
some concrete category of commands, in contrast to the generic labels P .



of self-composition lies neither in the “self” nor in the “composition” aspect, but in the
dual use of auxiliary state: related programs do not have to be copies of each other (in
fact they need not be syntactically similar at all and may stem from different languages),
and no syntactic composition operator is required at their point of interaction. Indeed,
the witness relations φ can be interpreted as specifications applicable at the point of
program composition in a self-composed program, mediating between pre- and postre-
lations in a style reminiscent of interpolants [17].

Terauchi and Aiken [37] observe that the efficiency of self-composition is improved
if phrase-duplication is applied only to small program fragments, but limit their atten-
tion largely to noninterference. They demonstrate that type systems for noninterference
yield transformation rules that push self-composition towards the leaves of the syntax
tree so that the symmetry between C and C ′ can be better exploited. Our application
of relational decomposition is phrased in the opposite direction: we derive a relational
logic from a unary one rather than aiming to obtain unary specifications from a given
relational specification. The language considered by Terauchi and Aiken [37] is that of
simple assignments and while-loops. In particular, heap structures – whose treatment
presents a particular challenge due to the fact that differences in location chosen by the
allocator in different runs are generally considered unobservable – are not considered.

Naumann [31] extends Terauchi and Aiken’s work to a language with objects, for
general relational pre- and postconditions. Indistinguishability of locations is treated
using the well-known technique of partial bijections [12, 7]. Naumann’s encoding of
relational into unary specifications employs ghost fields: each object contains a boolean
ghost field indicating whether the object should be interpreted w.r.t. the left or the right
execution, and a further ghost field that (if nonnull) refers to the object’s “mate” in the
opposite execution. From a semantic point of view this encoding is slightly unsatisfac-
tory, as the soundness result is contingent on the condition that None of the considered
relations or programs should depend on these fields except through explicit use in the
encoding ([31], page 9). Arguably, this condition represents an external assumption
whose impact on the end-to-end guarantee is not formally modeled, requiring the end-
user to trust some additional tool validating (possibly a syntactic approximation of) this
condition. In fact, independence is itself a relational concept – and so is arguably the
concept of ghost variables: the rules governing their use are virtually identical to those
for a high-security variable in noninterference. A practical drawback of Naumann’s en-
coding is that the explicit declaration of ghost fields permeates all classes, potentially
limiting the scalability of the approach ([31], page 16).

Beringer-Hofmann [15] and Darvas-Hähnle-Sands [18] formulate self-composition
in terms of program logics, but again focus on noninterference. In particular, Beringer
and Hofmann [15] show how standard type systems [38, 24] can be formally interpreted
in a unary logic, using a type-directed rule-by-rule construction of intermediate formu-
lae φ. The witness relations employed in the present paper extend this construction to
arbitrary relational simulation properties over possibly distinct transition systems. The
present paper highlights that the synthesis of the witnesses proceeds along the phrase
structure or the structure of the RHL proof rules, independent of the type structure.

The logics of Benton [13] and Yang [40] provide a blueprint for our relational Hoare
logic, but do not support verification across different languages. These logics are jus-



tified by direct recourse to operational semantics rather than being derived from an
intermediate unary verification formalism. A further difference consists in our use of
a termination-insensitive interpretation of relational judgements: simulations are vacu-
ously fulfilled if either execution fails to terminate. This design decision is motivated
by the fact that already in the unary setting, proof techniques for termination (appropri-
ate measures, i.e. variants) are significantly different from those for partial-correctness
properties (invariants). A second reason is that applications such as compiler verifica-
tion often actually relax termination-sensitivity to at least an asymmetric form [28].
Thus, termination appears sufficiently orthogonal to the functional aspects of relational
behaviour to be treated separately. Nevertheless, we acknowledge that (and point out
where) our design decision has repercussions on the proof rules we are able to derive.

In the area of translation validation, a number of verification approaches have been
proposed, some of which include rules for relating loops that fail to proceed in lock-
step [32, 20, 39]. In contrast to our proof system, these approaches are typically justified
with the help of auxiliary constructs such as program labels and paths, in conflict with
the extensional view taken in the present paper and also emphasized by Benton.

2 The principle of decomposition

2.1 Introducing interpolating witnesses

For the purpose of this paper, a transition system T over state space S and labels P
is a ternary relation T ⊆ S × P × S . Contrary to other uses of transition systems,
we employ a big-step reading where labels may represent compound program phrases
whose cumulative effect is captured in a single transition.

Each transition system T gives rise to a one-execution specification system where
assertions are (curried) binary predicates A over S that relate initial and final states,
similar to postconditions in VDM [25]. We interpret specifications as partial-correctness
statements, by writing |=T P : A whenever (s, P, t) ∈ T implies A s t for all s, t ∈ S.

The formal notion of simulation employs pre- and postconditions that relate states
across two transition systems. In order to clearly distinguish between one- and two-
execution specifications we write relational assertions in uncurried, often infix style.

Definition 1. For T ⊆ S×P×S and T ′ ⊆ S ′×P ′×S ′, letR,S ⊆ S×S ′. Programs
P ∈ P and P ′ ∈ P ′ are R =⇒ S-similar, notation |=T ′T P ∼ P ′ : R =⇒ S, if for all
s, s′, t, and t′ with (s, P, t) ∈ T and (s′, P ′, t′) ∈ T ′, sRs′ implies tSt′.

Unless explicitly remarked otherwise, we follow the convention that nonprimed entities
(states, phrases,. . . ) refer to T and primed entities to T ′.

Properties of this shape for S = S ′ include determinism (choose R and S to be
equality), liveness of variables (choose R and S to be equality on live-in variables) and
slicing, intra-language transformations, and termination-insensitive versions of proper-
ties considered by [13]. Further instances arise when the condition S = S ′ is dropped,
including variations of compiler correctness, refinement, and abstract interpretation.

The core of relational decomposition consists of the operators DecL and DecR

DecL R φ s t = ∀s′. sRs′ → tφs′ and DecR S φ s
′ t′ = ∀t. tφs′ → tSt′. (1)



Given φ ⊆ S×S ′, operator DecL constructs a unary assertion for the left decomposition
triangle from Figure 1, i.e. for the execution of P . In fact, the construction uniformly
applies for all types S ′ subject toR ⊆ S×S ′. Similarly, DecR constructs a unary asser-
tion for the right decomposition triangle from Figure 1, the execution of P ′, uniformly
for types S with S ⊆ S × S ′. The operators are motivated by the following result.

Lemma 1. (Soundness) Suppose |=T P : DecL R φ and |=T ′ P ′ : DecR S φ. Then
|=T ′T P ∼ P ′ : R =⇒ S.

Thus, the task of verifying |=T ′T P ∼ P ′ : R =⇒ S is reduced to the task of exhibiting
an arbitrary φ that satisfies the two one-execution properties. Each suitable witness φ
is a (relational) interpolant between the relational precondition R and the relational
postcondition S, by virtue of constraints (1). Before deriving concrete interpolants that
justify RHL in Section 3, we discuss further formal properties of decomposition.

2.2 Properties of decomposition operators

We first observe that DecL is covariant in φ and contravariant in R, i.e. for φ ⊆ ψ
and Q ⊆ R, DecL R φ s t implies DecL Q ψ s t, while DecR is covariant in S and
contravariant in φ, i.e. for ψ ⊆ φ and S ⊆ T , DecR S φ s

′ t′ implies DecR T ψ s
′ t′. We

also note the identity DecR S φ = DecL φ
−1 S−1. Next, we characterize the witnesses

suitable for establishing Lemma 1. To this end, consider the operators

φTL P R = {(t, s′) | ∃s. (s, P, t) ∈ T ∧ sRs′}
φT

′

R P ′ S = {(t, s′) | ∀t′. (s′, P ′, t′) ∈ T ′ → tSt′}

The former constructs a candidate for φ according to the upper left triangle in the dia-
gram, givenR and P . The latter constructs a (in general different) candidate φ according
to the lower right triangle in the diagram, given S and P ′. In point-free notation [22],
φT

′

R P ′ S can be written as P̂ ′\S where P̂ ′ denotes the uncurried form of the transition
relation for P ′ and the weakest prespecification X\Y is defined as Y ;X−1.

By construction, these operators are covariant in their second argument and yield
valid specifications for their defining triangles:

Lemma 2. We have |=T P : DecL R (φTL P R) and |=T ′ P ′ : DecR S (φT
′

R P ′ S).

They also satisfy φTL P (φT
′

R P ′ T ) ⊆ φT
′

R P ′ (φTL P T ) and set-theoretic laws
such as φTL P (R ∩ T ) ⊆ φTL P R∩φTL P T . In particular, φTL P R is the least relation
obeying the left triangle, and φT

′

R P ′ S is the greatest relation obeying the right triangle:

Lemma 3. If |=T P : DecL R φ then φTL P R ⊆ φ. If |=T ′ P ′ : DecR S φ then
φ ⊆ φT ′R P ′ S.

Thus, any witness φ from Lemma 1 is sandwiched between the two operators,
i.e. satisfies φTL P R ⊆ φ ⊆ φT

′

R P ′ S. Conversely, either operator is suitable as a
witness:



Lemma 4. (Completeness) Suppose |=T ′T P ∼ P ′ : R =⇒ S. Then

1. |=T P : DecL R (φTL P R) and |=T ′ P ′ : DecR S (φTL P R)
2. |=T P : DecL R (φT

′

R P ′ S) and |=T ′ P ′ : DecR S (φT
′

R P ′ S).

Combining the above lemmas, we obtain the following.

Theorem 1. |=T ′T P ∼ P ′ : R =⇒ S iff φTL P R ⊆ φT ′R P ′ S.

Proof. For the implication from left to right, we apply Lemma 4(1) to obtain |=T ′ P ′ :
DecR S (φTL P R). Then, Lemma 3 (part 2) yields φTL P R ⊆ φT

′

R P ′ S. For the
opposite implication, we have |=T P : DecL R (φTL P R) by Lemma 2, so |=T P :
DecL R (φT

′

R P ′ S) by covariance. We also have |=T ′ P ′ : DecR S (φT
′

R P ′ S) (again
by Lemma 2), hence the result follows by applying Lemma 1 to φ := φT

′

R P ′ S.

The operators are defined from the relational perspective, but are also intimately
connected with the unary transformers

Strongest postcondition : SPTP (X) = {t | ∃ s ∈ X. (s, P, t) ∈ T }
Weakest lib. precondition : WLPT

′

P ′ (Y
′) = {s′ | ∀ t′. (s′, P ′, t′) ∈ T ′ → t′ ∈ Y ′}

where X and Y ′ are state sets from T and T ′, respectively. Indeed, we have

φTL P R = {(t, s′) | t ∈ SPTP ({s | sRs′})}
φT

′

R P ′ S = {(t, s′) | s′ ∈WLPT
′

P ′ ({t′ | tSt′)})}
(2)

Substituting these equalities into Theorem 1, we have thatR =⇒ S-similarity is soundly
and completely characterized by the inclusion of the left SP in the right WLP:

{(t, s′) | t ∈ SPTP ({s | sRs′})} ⊆ {(t, s′) | s′ ∈WLPT
′

P ′ ({t′ | tSt′})}. (3)

We may also define the relational transformers

Strongest postrelation :
SRT ,T

′

P,P ′ (R) = {(t, t′) | ∃ s s′. (s, P, t) ∈ T ∧ (s′, P ′, t′) ∈ T ′ ∧ sRs′}
Weakest lib. prerelation :

WLRT ,T
′

P,P ′ (S) = {(s, s′) | ∀ t t′. (s, P, t) ∈ T → (s′, P ′, t′) ∈ T ′ → tSt′}.

These satisfy the following properties.

Lemma 5. We have

1. φTL P (WLRT ,T
′

P,P ′ (S)) ⊆ φT ′R P ′ S

2. φTL P R ⊆ φT ′R P ′ (SRT ,T
′

P,P ′ (S))

3. WLRT ,T
′

P,P ′ (S) = {(s, s′) | s′ ∈WLPT
′

P ′ ({t′ | s ∈WLPTP ({t | tSt′})})}
= {(s, s′) | s ∈WLPTP ({t | s′ ∈WLPT

′

P ′ ({t′ | tSt′})})}
4. SRT ,T

′

P,P ′ (R) = {(t, t′) | t′ ∈ SPT
′

P ′ ({s′ | t ∈ SPTP ({s | sRs′})})}
= {(t, t′) | t ∈ SPTP ({s | t′ ∈ SPT

′

P ′ ({s′ | sRs′})})}.



The latter two equations show that R =⇒ S-similarity can also be verified by sequen-
tially applying the respective unary liberal precondition operators (item 3) and verify-
ing R ⊆ WLRT ,T

′

P,P ′ (S), or by applying the respective unary strongest postcondition

operators (item 4) and verifying SRT ,T
′

P,P ′ (R) ⊆ S. The mixed positive and negative oc-
currences of interpolants in the definition of DecL and DecR highlight that interpolants
capture the property applicable at the “point of composition” in self-composition, i.e. at
the state where P has executed but P ′ has not started yet, as captured by equation (3).

3 Application: decomposed justification of Relational Hoare Logic

We now instantiate the generic development to the situation where T and T ′ coincide
and are equal to the operational judgement of an imperative language with objects.

3.1 Language definition and unary program logic

We assume infinite and distinct categories of variables x, y ∈ X , field identifiers f ∈ F ,
class identifiers c ∈ C, and locations ` ∈ L. The space of finite partial functions from
A to B is denoted by A ⇀ B, and the space of total functions by A ⇒ B. Operations
and constructions such as update, domain, and range, are defined and denoted in the
standard fashion. A value v ∈ V is either an integer value i, a location `, or Null. Value
expressions e ∈ E are value constants, variables, or binary operators, while boolean
expressions b are binary predicates over values. The syntax of commands is

C ∈ P ::= Skip | x:=e | x := new c ι | x:=y.f | x.f :=e |
C;D |While b do C | If b then C else D

where ι ∈ F ⇀ E specifies the initialization of fields in the absence of a formalized
class system.

The operational semantics is defined over objects, heaps, stores, and states

o ∈ O ≡ C × (F ⇀ V)
h ∈ H ≡ L⇀ O

s ∈ R ≡ X ⇒ V
σ ∈ Σ ≡ R×H

2We write JeKs and JbKs for the (heap-independent) evaluation of value and boolean
expressions, respectively, and map the former operation over initialization maps in the
expected manner.

The transition system TObj ⊆ Σ × P ×Σ, with pretty-printed judgements σ C−→ τ ,
is defined as a big-step relation, with nondeterministic allocation

OPNEW
` /∈ locs (s, h)

(s, h) x:=new c ι−−−−−−−→ (s[x 7→ `], h[` 7→ (c, JιKs)])

2 The use of s, t, . . . for concrete stores as well as for states of abstract transition systems should
not lead to confusion, as instantiations to the concrete language are always discussed separately
from the abstract treatment.



(locs σ denotes the set of all locations ` occurring in σ) and field modification rule

OPPUT
s x = ` h ` = (c, F )

(s, h)
x.f :=e−−−−→ (s, h[` 7→ (c, F [f 7→ JeKs])])

.

The semantics does not model error states or stuck executions explicitly: attempts to
access dangling pointers, Null, or undefined fields of allocated objects result in the
absence of a formal derivation.

In accordance with the setup of Section 2.1, we have derived a unary logic with
judgements of the form B C : A where A are curried relations over Σ. The proof rules
are essentially those given in [15], plus rules for object allocation

B x := new c ι : λ (s, h) τ. ∃ ` /∈ locs (s, h). τ = (s[x 7→ `], h[` 7→ (c, JιKs)])

and for the field accessing instructions (omitted). Using standard techniques [26, 33],
we have proven the logic sound and complete, relative to the ambient logic HOL:

Theorem 2. B C : A holds if and only if |=TObj C : A.

3.2 Derivation of relational proof rules

Instantiating T = TObj and/or T ′ = TObj yields laws that decompose the operators
φ
TObj

L C R and φTObj

R C ′ S along the phrase structure, in accordance with the character-
izing equations (2). Examples for such laws are

φ
TObj

L C;D R = φ
TObj

L D (φTObj

L C R)

φ
TObj

R C ′;D′ S = φ
TObj

R C ′ (φTObj

R D′ S)

WLRTObj,TObj

C;D,C′;D′(S) = WLRTObj,TObj

C,C′ (WLRTObj,TObj

D,D′ (S))

where in the first two cases, the type of the opposite transition system is only constrained
by the type of the relations R and S.

Instantiating both transition systems with TObj, we now derive proof rules for judge-
ments C ∼ C ′ : R =⇒ S. In contrast to Benton [13], but in accordance with Defini-
tion 1, we interpret these in the termination-insensitive style. By virtue of the previ-
ous section, several formal interpretations of these judgements are compatible with this
reading. The derivability from the unary program logic is most explicit if we define
C ∼ C ′ : R =⇒ S to be a shorthand for

∃φ. B C : DecL R φ ∧B C ′ : DecR S φ (4)

and then establish the proof rules as derived lemmas. Figure 2 shows selected proof
rules for pairs of structurally identical phrases, namely the rule for related object allo-
cations (representative of all rules for relating pairs of atomic instructions) and rules for
compound phrases. These rules are similar to the rules given (for the heap-free fragment
of the language) by Benton [13]. As is the case in loc. cit., the loop rule is restricted to
situations where both iterations proceed in lock-step. Our rule for conditionals allows
the executions to proceed along different control paths and consequently has hypotheses
for all four possible combinations of branch outcomes.



RHLNEW
R = WLR

TObj,TObj

x:=new c ι,x′:=new c′ ι′(S)

x := new c ι ∼ x′ := new c′ ι′ : R =⇒ S

RHLCOMP
C ∼ C′ : R =⇒ T D ∼ D′ : T =⇒ S

C;D ∼ C′;D′ : R =⇒ S

RHLIFF

C ∼ C′ : R ∩ {((s, h), (s′, h′)) | JbKs ∧ Jb′Ks′} =⇒ S
D ∼ D′ : R ∩ {((s, h), (s′, h′)) | ¬JbKs ∧ ¬Jb′Ks′} =⇒ S
C ∼ D′ : R ∩ {((s, h), (s′, h′)) | JbKs ∧ ¬Jb′Ks′} =⇒ S
D ∼ C′ : R ∩ {((s, h), (s′, h′)) | ¬JbKs ∧ Jb′Ks′} =⇒ S

If b then C else D ∼ If b′ then C′ else D′ : R =⇒ S

RHLWHL

C ∼ C′ : U =⇒ R R = T ∩ {((s, h), (s′, h′)). JbKs = Jb′Ks′}
U = R ∩ {((s, h), (s′, h′)). JbKs} S = R ∩ {((s, h), (s′, h′)). ¬JbKs}

While b do C ∼While b′ do C′ : R =⇒ S

Fig. 2. RHL rules for identically shaped phrases (excerpt)

T
φ
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C C’ζ

S

D D’π

ρ

τ ’

’σσ

ρ ’

τ

The derivation of the rules exhibits witnesses as mandated
by equation (4). By the results of the previous section, wit-
nesses for the atomic instruction forms may be chosen as
φ
TObj

L C R or φTObj

R C ′ S, or any relation sandwiched be-
tween the two. Witnesses for compound phrases are synthe-
sized from the witnesses of the constituents, generalizing the
noninterference-specific construction from [15]. For example,
the witness for the conclusion of rule RHLCOMP is given by
φ = {(τ, σ′). ∃ ρ. ρζσ′ ∧ (∀ ρ′. ρTρ′ → τπρ′)} where ζ and
π denote the witnesses of the hypotheses, as illustrated on the
right. The witness for while rule, ΦWhile

(b′,R,φ), is constructed as
the least fixed point of the functional

ψ 7→
{

(τ, (t′, k′))
∣∣∣∣ (Jb′Kt′ → (∃ σ. σφ(t′, k′) ∧ (∀ σ′. σRσ′ → τψσ′)))
∧ (¬Jb′Kt′ → τR(t′, k′))

}
(which is monotone in φ and ψ), where φ is the witness of C ∼ C ′ : U =⇒ R. As a by-
product of our generalization, the proofs for the compound phrases reveal a discipline
that is not apparent in our earlier noninterference-specific formulation [15]: proofs of
the DecL . .-conjuncts only use DecL . .-clauses of the hypotheses, and proofs of the
DecR . .-conjuncts only use DecR . .-clauses. Thus, the proof system separates into
subsystems with specifications DecL . . and DecR . ..

In addition to the rules in Figure 2, we have derived rules where the two phrases
may be of different shape, including Benton’s rules of falsity, consequence, common
branch elimination, and dead code elimination – see Figure 3. Carrying a unary judge-
ment in the hypothesis, the dead-code rule applies to arbitrary phrases C whereas
Benton only considers the specializations for assignment and while. Conclusions of
DEADL may be promoted to phrase compositions using COMPSKIP. We omit the sim-
ilar rules for handling dead code and common branches in phrases to the right of ∼.



Rule UNARY injects a pair of unary judgements into the relational world. This rule is
unsound in the termination-sensitive setting. On the other hand, Benton’s rule of transi-

tivity
C ∼ C ′ : R =⇒ S C ′ ∼ C ′′ : R =⇒ S PER(R⇒ S)

C ∼ C ′′ : R =⇒ S
where PER(R ⇒

S) indicates that the function space R ⇒ S is a partial equivalence relation3, is un-
sound in the termination-insensitive setting: the hypotheses are vacuously satisfied if
C ′ diverges but C and C ′′ converge. As decomposition witnesses orientate the simu-

lation relation, Benton’s rule of symmetry
C ∼ C ′ : R =⇒ S PER(R⇒ S)

C ′ ∼ C : R−1 =⇒ S−1
can

be derived if we exploit the semantic symmetry of the simulation relation and use the
formal completeness of the program logic, i.e. the reverse direction of Theorem 2. An
alternative is to modify the interpretation of judgements, by conjoining (4) with

∃ψ. B C ′ : DecL R
−1 ψ ∧B C : DecR S

−1 ψ. (5)

The resulting interpretation is immediately symmetric and also allows the derivation of
the rules above, except for transitivity.

COMBRL

C ∼ C′ : U =⇒ S U = R ∩ {((s, h), (s′, h′)). JbKs}
D ∼ C′ : T =⇒ S T = R ∩ {((s, , h), (s′, h′)). ¬JbKs}

If b then C else D ∼ C′ : R =⇒ S

DEADL
B C : DecL R S

C ∼ Skip : R =⇒ S
COMPSKIP

C ∼ Skip : R =⇒ T D ∼ D′ : T =⇒ S

C;D ∼ D′ : R =⇒ S

FALSE
C ∼ C′ : ∅ =⇒ S

UNARY

B C : A B C′ : A′

R = {(σ, σ′). ∀ τ τ ′. A σ τ → A′ σ′ τ ′ → τSτ ′}
C ∼ C′ : R =⇒ S

SUB

C ∼ C′ : R =⇒ S
R′ ⊆ R S ⊆ S′

C ∼ C′ : R′ =⇒ S′
SETOP

C ∼ C′ : R =⇒ S R′ = R� T
C ∼ C′ : T =⇒ U S′ = S � U � ∈ {∪,∩}

C ∼ C′ : R′ =⇒ S′

Fig. 3. Nonsynchronous RHL rules (excerpt)

Completeness is also used when deriving rules that contain conclusions with phrases
that are subphrases of phrases in hypotheses, thus reversing the standard subphrase
orientation that is obeyed by our unary logic. For example, the proof of the Skip-

elimination rule
Skip;C ∼ C ′ : R =⇒ S

C ∼ C ′ : R =⇒ S
employs completeness to deduce B C :

DecL R φ from B Skip;C : DecL R φ. An alternative to the use of the formal com-
pleteness result would be to work directly at the level of semantic validity, i.e. replace
all judgements of the form B C : A in (4) or (5) by |=TObj C : A.

Theorem 3. The rules in Figures 2 and 3 are derivable as discussed and thus sound
with respect to Definition 1.

3 In Benton’s setting R⇒ S and R =⇒ S coincide.



3.3 New rules for dissonant loops

Like the rules of Benton [13] and Yang [40], rule RHLWHL from Figure 2 requires
the iterations to proceed in lock-step. We have derived two novel rules that overcome
this limitation. Our first rule requires both bodies to preserve the invariant individually,
decoupling the loops based on a similar motivation as the dead code rules:

C ∼ Skip : (R ∩ {((s, h), (s′, h′)). JbKs}) =⇒ R
Skip ∼ C′ : (R ∩ {((s, h), (s′, h′)). Jb′Ks′}) =⇒ R

S = R ∩ {((s, h), (s′, h′)). ¬JbKs ∧ ¬Jb′Ks′}
While b do C ∼While b′ do C ′ : R =⇒ S

The second rule splits the invariant into preconditions appropriate for synchronized
iterations and autonomous iterations.

C ∼ C′ : U =⇒ R U ⊆ R ∩ {((s, h), (s′, h′)). JbKs ∧ Jb′Ks′}
C ∼ Skip : V =⇒ R V ⊆ R ∩ {((s, h), (s′, h′)). JbKs}
Skip ∼ C′ : W =⇒ R W ⊆ R ∩ {((s, h), (s′, h′)). Jb′Ks′}
R ⊆ U ∪ V ∪W ∪ S S = R ∩ {((s, h), (s′, h′)). ¬JbKs ∧ ¬Jb′Ks′}
W ∩ {((s, h), (s′, h′)). JbKs} ⊆ U V ∩ {((s, h), (s′, h′)). Jb′Ks′} ⊆ U

While b do C ∼While b′ do C ′ : R =⇒ S

This rule is interderivable with the variant where the last two side-conditions (the inclu-
sions . . . ⊆ U ) are omitted, for the price of replacing U ⊆ . . . by U = . . . in the fist side
condition. The earlier rule RHLWHL arises from this variant by setting V = W = ∅.

The decomposed derivation of the new loop rules employs fixed-point-interpolants
similar to ΦWhile

(b′,R,φ) above. For the details, see [14].
As an example for the application of these rules, consider the programs

C ≡ r:=0;i:=0;While i < n do (r:=r + i;i:=i+ 1)
C ′ ≡ r:=0;i:=0;While i < n do (r:=r + i;i:=i+ 1;r:=r + i;i:=i+ 1).

The equivalence between the C and its unrolling C ′ for even n may be formulated as
the relational specification C ∼ C ′ : TN =⇒ SN for any N ≥ 0 and

TN ≡ {((s, h), (s′, h′)). JnKs = JnKs′ = 2N}
SN ≡ {((s, h), (s′, h′)). JnKs = JnKs′ = JiKs = JiKs′ = 2N ∧ JrKs = JrKs′ = 2N2 −N}.

A proof for this specification using the rule for independent loops instantiates R to

TN ∩


((s, h), (s′, h′))

˛̨̨̨
∃ I I ′ k. JiKs = I ∧ JiKs′ = I ′ ∧ 0 ≤ I ≤ 2N ∧ 0 ≤ I ′ ≤ 2N

∧ 2JrKs = I(I − 1) ∧ 2JrKs′ = I ′(I ′ − 1) ∧ I ′ = 2k

ff
where each conjunct applies to either the primed or the non-primed state.

Alternatively, the same specification may be proven using the rule for partially syn-
chronized loops, using the instantiation W = ∅,

R ≡ TN ∩

8<:((s, h), (s′, h′))

˛̨̨̨
˛̨ ∃ I I

′. JiKs = I ∧ JiKs′ = I ′ ∧ 0 ≤ I, I ′ ≤ 2N
∧ 2JrKs = I(I − 1) ∧ 2JrKs′ = I ′(I ′ − 1)
∧ ((I < N ∧ I ′ = 2I) ∨ (N ≤ I ∧ I ′ = 2N))

9=;
U ≡ R ∩ {((s, h), (s′, h′)). JiKs < 2N ∧ JiKs′ < 2N}
V ≡ R ∩ {((s, h), (s′, h′)). N ≤ JiKs < 2N},



based on the intuition that the first N iterations proceed synchronously, followed by
N additional unilateral iterations of the left loop. The entanglement surfaces in the
disjunctive final clause in the definition of R.

The above specifications universally quantify over the meta-variable N at Isabelle-
level. Using the parametrization mechanism below, we have also performed verifica-
tions where N is part of the specification, and shared between pre- and postconditions.

4 Extensions and applications

We briefly sketch some extensions of our formal framework, and motivating applica-
tions. Details of the development are available in [14].

Parametrized simulations Often, simulations are of interest where the pre- and post-
relations employ auxiliary state. We model this situation by endowing the relations
with additional arguments, similar to Kleymann’s [26] treatment for unary logics.

Definition 2. For transition systems T and T ′ as before, typeZ of auxiliary states, and
parametrized relations R : Z ⇒ (S × S ′), we write |=T ′T P ∼ P ′ : R =⇒Z S if for
all z, s, s′, t, and t′ with (s, P, t) ∈ T and (s′, P ′, t′) : T ′, sRzs′ implies tSzt′, where
Rz denotes the application of R to parameter z.

Parametrized simulation can be reduced to nonparametrized simulation using two
constructions on transition systems, as follows. The first construction, the product

T × T ′ ≡ {((s, s′), (P, P ′), (t, t′)) | (s, P, t) ∈ T ∧ (s′, P ′, t′) ∈ T ′}

internalizes the two-execution nature of simulations. Second, we define the identity
transition system for parameters Z , denoted by IZ , by {(z, ∗, z) | z ∈ Z} where ∗ is
the unique value of some singleton set of labels.

The following lemma justifies these constructions by relating Z-parametrized be-
haviour over T × T ′ to nonparametrized behaviour over T × (T ′ × IZ), where

−→
R

denotes the relation {(s, (s′, z)). (s, s′) ∈ Rz} for any R : Z ⇒ (S × S ′).

Lemma 6. For R,S : Z ⇒ (S × S ′) we have |=T ′T P ∼ P ′ : R =⇒Z S exactly iff
|=(T ′×IZ)
T P ∼ (P ′, ∗) :

−→
R =⇒

−→
S .

Instantiating the parametrization mechanism to our language with objects, we may
derive proof rules for judgements `Par C ∼ C ′ : R =⇒Z S formally defined as

∃ φ.B C : DecL
−→
R φ ∧B C ′ : DecR (

−→
S )

]
φ].

Here, the operation ψ] ≡ {((x, z), x′) | (x, (x′, z)) ∈ ψ} shifts the auxiliary value z to
the left component, so that it is not affected by the execution of C ′. By construction,
`Par C ∼ C ′ : R =⇒Z S implies |=TObj

TObj
C ∼ C ′ : R =⇒Z S. The proof rules for

the system `Par C ∼ C ′ : R =⇒Z S are essentially the same as in Section 3, and are
derived by incorporating the operators (.)] and

−→
(.) into the construction of witnesses.



Noninterference for objects A typical use case for the parametrization mechanism con-
sists of noninterference. Following Banerjee-Naumann [7], we consider a notion of in-
distinguishability that prevents an attacker from observing the precise location chosen
during an allocation, and also allow each execution to allocate objects that have no coun-
terpart in the opposite execution. Formally, this is modeled by parametrizing the relation
∼ by partial bijections over locations, i.e. sets β ⊆ L2 satisfying (` = `1)⇔ (`′ = `′1)
for any (`, `′) ∈ β and (`1, `′1) ∈ β.

Naturally, the bijections evolve throughout program execution according to the al-
location of fresh objects, but in a conservative manner: the partial bijection relating the
final states should be an extension of the one relating the initial states. We therefore
parametrize the simulations by bijections, communicating the initial bijection to the
postrelation. Indeed, for

RNI = λ β. {(σ, σ′). σ ∼β σ′} SNI = λ β. {(σ, σ′). ∃ γ ⊇ β. σ ∼γ σ′}

noninterference coincides with |=TObj

TObj
C ∼ C : RNI =⇒L2 SNI and, in fact, also with

|=TObj

TObj
C ∼ C : SNI =⇒L2 SNI. This motivates the definition of the derived forms

LOW (C) ≡ `Par C ∼ C : SNI =⇒L2 SNI

HIGH (C) ≡ `Par C ∼ Skip : RNI =⇒L2 RNI,

that interpret, respectively, the judgements for noninterferent and publically unobserv-
able code fragments. As the semantic interpretations SNI and RNI are transparent, the
derived rules can be combined with direct uses of the underlying rules for `Par C ∼
C ′ : R =⇒Z S to integrate type-based with logical reasoning.

Error behaviour and separation logic We have also derived proof rules of unary and
relational separation logic, including the appropriate frame rules. The derivations make
crucial use of the parametrization mechanism, by instantiating Z to the type of (rela-
tional) assertions. This allows frame assertions to be joined onto the pre- and postcon-
ditions in a style reminiscent of Birkedal et al.’s Kripke resource extension [16]. Our
encoding is derived from a variant of `Par C ∼ C ′ : R =⇒Z S for a language where
null dereferences and attempts to access undefined fields result in a fault/error state. The
faultiness of states is exposed in the specifications of the unary and derived relational
logics, enabling the interpretation of separation logic judgements to specify equi-fault-
avoidance of the two phrases. We include the Isabelle-files of this development in [14]
but are prevented from a detailed exposition by page limitations.

5 Discussion

Relational decomposition is a technique for integrating relational logics into stacks of
unary verification frameworks [6, 4]. We established soundness and completeness of
decomposition for general simulations, introduced relational variants of predicate trans-
formers, and studied their relationship to unary transformers. We applied our findings



to derive relational program logics, and sketched applications to noninterference and
separation logics. Our development is backed up by a formalization in Isabelle/HOL.

The formulation across different transition systems was crucial for our derivation
of parametrized simulations. Future work will seek to exploit this flexibility for the
verification of refinement and compiler correctness. Work on a relational logic for a
bytecode-like language is under way, with a system for formally relating the two lan-
guage levels as an intended subsequent step. Later, one might aim to support features
such as arrays, exceptions, and methods. Our treatment of noninterference in [15] al-
ready supports parameterless but possibly recursive procedures, but transferring this
development to virtual methods and non-lockstep method invocations is future work.

Concrete relational verification might benefit from formulating relational decompo-
sition more algorithmically, so that the traversal of a program pair emits unary verifica-
tion tasks, along the line of Terauchi and Aiken’s work. Hints for the discovery of rela-
tional invariants may potentially arise from Amtoft et al.’s preconditions for conditional
information flow [2], Barthe et al.’s product programs [10], from Rhodium’s transfor-
mation rules [27], or from Tate et al.’s program equivalence graphs [36]. It would also
be interesting to compare the expressiveness and usability of our rules for dissonant
loops with the rules from translation validation [20], and to investigate how the latter
can be justified in a more semantics-oriented fashion.

Natural extensions of noninterference include extensional notions of declassifica-
tion [8], conditional information flow [3], and the explicit integration of noninterfer-
ence and separation disciplines, following the work of Amtoft et al. [1]. Magill et al.’s
two-step abstractions for reasoning about data structures may provide orientation how
ghost variables and program instrumentation interact with separation aspects [29].

A more abstract treatment of our operators can be obtained using relational alge-
bra. As pointed out by a referee, uncurrying DecL R φ yields (R\φ)−1 while uncur-
rying DecR S φ yields the weakest postspecification S/φ given by φ−1;S. Extending
the work of [22, 23], Gardiner [19] explores connections between these operators and
predicate transformers to study a variation of bisimulation called power simulation. In
contrast to our work, predicates and relations are formulated over a single universe.

Barthe et al.’s article [11] includes a self-composed treatment of separation, but
restricted to a (termination- and) error-insensitive case and without a fine-grained object
control via partial bijections. Reducing error-avoidance of self-composed programs to
equi-error-avoidance of C and C ′ appears difficult as the execution of C ′ is conditional
on the nonfaultiness of C’s final state.

Saabas and Uustalu show how type derivations yield semantics-preserving proof
transformations between pairs of judgements of unary Hoare logics [34].

A long-term goal is the integration of our techniques into verification infrastruc-
tures for mainstream languages such as the Verified Software Toolchain for C [5]. As a
stepping stone towards this goal, fragments of C such as Spark/Ada [9] may represent
a realistic testbed that is both industrially relevant and formally tractable.

Acknowledgments Andrew Appel encouraged me to revisit the earlier article with Mar-
tin Hofmann. The PL group at Princeton and the SAnToS group at Kansas State Univer-
sity provided numerous comments. I am grateful to Dave Naumann and the anonymous
referees for their detailed feedback and several additional pointers to the literature.



References

1. T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic for information flow in object-oriented
programs. In Morrisett and Jones [30], pages 91–102.

2. T. Amtoft, J. Hatcliff, and E. Rodrı́guez. Precise and automated contract-based reasoning
for verification and certification of information flow properties of programs with arrays. In
A. D. Gordon, editor, Programming Languages and Systems: Proceedings of the European
Symposium on Programming (ESOP’10), volume 6012 of LNCS, pages 43–63. Springer,
2010.

3. T. Amtoft, J. Hatcliff, E. Rodriguez, Robby, J. Hoag, and D. Greve. Specification and check-
ing of software contracts for conditional information flow. In 15th International Symposium
on Formal Methods (FM’08), volume 5014 of LNCS, pages 229–245. Springer, May 2008.

4. A. W. Appel. Foundational high-level static analysis. In Proceedings of the CAV 2008
Workshop on Exploiting Concurrency Efficiently and Correctly (EC2), July 2008.

5. A. W. Appel. Verified software toolchain. In G. Barthe, editor, Programming Languages
and Systems: Proceedings of the European Symposium on Programming (ESOP’11), volume
6602 of LNCS, pages 1–17. Springer, Apr. 2011. Invited talk.

6. D. Aspinall, L. Beringer, M. Hofmann, H.-W. Loidl, and A. Momigliano. A program logic
for resources. Theoretical Computer Science, 389(3):411–445, 2007.

7. A. Banerjee and D. Naumann. Stack-based access control for secure information flow. Jour-
nal of Functional Programming, 15:131–177, Mar. 2005.

8. A. Banerjee, D. A. Naumann, and S. Rosenberg. Towards a logical account of declassifica-
tion. In M. W. Hicks, editor, Proceedings of the 2007 Workshop on Programming Languages
and Analysis for Security (PLAS 2007), pages 61–66. ACM Press, 2007.

9. J. Barnes. High Integrity Software: The SPARK Approach to Safety and Security. Addison-
Wesley, 2006.

10. G. Barthe, J. M. Crespo, and C. Kunz. Relational verification using product programs. See
http://software.imdea.org/∼ckunz/rellog/long-rellog.pdf, 2011.

11. G. Barthe, P. D’Argenio, and T. Rezk. Secure Information Flow by Self-Composition. In
R. Foccardi, editor, Computer Security Foundations Workshop, pages 100–114. IEEE Press,
2004.

12. G. Barthe and T. Rezk. Non-interference for a JVM-like language. In M. Fähndrich, editor,
Types in Language Design and Implementation, pages 103–112. ACM Press, 2005.

13. N. Benton. Simple relational correctness proofs for static analyses and program transforma-
tions. In N. D. Jones and X. Leroy, editors, Proceedings of the 31st ACM Symposium on
Principles of Programming Languages (POPL’04), pages 14–25. ACM Press, 2004.

14. L. Beringer. Relational decomposition – Isabelle/HOL sources. Available at
www.cs.princeton.edu/∼eberinge/RelDecompITP2011.tar.gz, 2011.

15. L. Beringer and M. Hofmann. Secure information flow and program logics. In IEEE Com-
puter Security Foundations Symposium, pages 233–248. IEEE Press, 2007.

16. L. Birkedal, N. Torp-Smith, and H. Yang. Semantics of separation-logic typing and higher-
order frame rules. In Proceedings of the 20th IEEE Symposium on Logic in Computer Science
(LICS 2005), pages 260–269. IEEE Press, 2005.

17. W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof
theory. Journal of Symbolic Logic, 22(3):269–285, 1957.
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